Skip to main content
Log in

C–H allylation of N-aryl-tetrahydroisoquinolines by merging photoredox catalysis with iodide catalysis

  • Articles
  • SPECIAL TOPIC · Organic Photochemistry
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

A dual catalytic system, combing visible light photoredox catalysis and iodide catalysis, has been developed for the functionalization of inert C–H bonds. By doing so, radical allylation reactions of N-aryl-tetrahydroisoquinolines (THIQs) were realized under extremely mild conditions, affording a wide variety of allyl-substituted THIQs in up to 78% yields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. For selected reviews and books on transition metal catalysis and C–H activation, see: a) HickmanAJ, Sanford MS. Nature, 2012, 484: 177–185

  2. Yeung CS, Dong VM. Chem Rev, 2011, 111: 1215–1292

    Article  CAS  Google Scholar 

  3. Ackermann L. Chem Rev, 2011, 111: 1315–1345

    Article  CAS  Google Scholar 

  4. Davies HM, Du Bois J, Yu JQ. Chem Soc Rev, 2011, 40: 1855–1856

    Article  CAS  Google Scholar 

  5. Yu JQ, Shi ZJ. Topics in Current Chemistry. Heidelberg: Springer, 2010

    Google Scholar 

  6. Dyker G. Handbook of C–H Transformations. Weinheim: Wiley-VCH, 2005

    Book  Google Scholar 

  7. Beller M, Bolm C. Transition Metals for Organic Synthesis: Building Blocks and Fine Chemicals. Vol. 1 and 2. 2nd Ed, Weinheim: Wiley-VCH, 2004

  8. For selected reviews and books, see: a) Zhuo CX, Zheng C, You SL. Acc Chem Res, 2014, 47: 2258–1856

  9. Bandini M. Angew Chem Int Ed, 2011, 50: 994–995

    Article  CAS  Google Scholar 

  10. Trost BM, Lee C. Catalytic Asymmetric Synthesis. 2nd Ed. New York: Wiley-VCH, 2010. 593–649

    Google Scholar 

  11. Lu Z, Ma S. Angew Chem Int Ed, 2008, 47: 258–297

    Article  CAS  Google Scholar 

  12. Tsuji J. Palladium Reagents and Catalysts: New Perspectives for the 21st Century. Chichester: Wiley, 2004: 431–518

  13. Dai LX, Tu T, You SL, Deng WP, Hou XL. Acc Chem Res, 2003, 36: 659–667

    Article  CAS  Google Scholar 

  14. For selected papers on reduction of π-allylpalladium complexes to allylic radicals, see: a) Millán A, Martín-Lasanta A, Miguel D, Cienfuegos LA, Cuerva JM. Chem Commun, 2011, 47: 10470–10472

  15. Millán A, Campana AG, Bazdi B, Miguel D, Cienfuegos LA, Echavarren AM, Cuerva JM. Chem Eur J, 2011, 17: 3985–3994

    Article  Google Scholar 

  16. Campana AG, Bazdi B, Fuentes N, Robles R, Cuerva JM. Angew Chem Int Ed, 2008, 47: 7515–7519

    Article  CAS  Google Scholar 

  17. Sasaoka SI, Yamamoto T, Kinoshita H, Inomata K, Kotake H. Chem Lett, 1985, 315–318

    Google Scholar 

  18. For selected reviews, see: a) Narayanam JM, Stephenson CR. Chem Soc Rev, 2011, 40: 102–113

  19. Teplý F. Collect Czech Chem Commun, 2011, 76: 859–917

    Article  Google Scholar 

  20. Shi L, Xia W. Chem Soc Rev, 2012, 41: 7687–7697

    Article  CAS  Google Scholar 

  21. Xuan J, Xiao WJ. Angew Chem Int Ed, 2012, 51: 6828-6838

  22. Prier CK, Rankic DA, MacMillan DW. Chem Rev, 2013, 113: 5322–5363

    Article  CAS  Google Scholar 

  23. Ravelli D, Fagnoni M, Albini A. Chem Soc Rev, 2013, 42: 97–113

    Article  CAS  Google Scholar 

  24. Xi Y, Yi H, Lei A. Org Biomol Chem, 2013, 11: 2387–2403

    Article  CAS  Google Scholar 

  25. Schultz DM, Yoon TP. Science, 2014, 343: 1239176

    Article  Google Scholar 

  26. For reviews and books on dual catalysis merging visible light photocatalysis with other catalytic manners, see: a) Hopkinson MN, SahooB, Li J, Glorius F. Chem Eur J, 2014, 20: 3874–3886

  27. Zeitler K, Neumann M. Synergistic visible light photoredox catalysis. In: König B, Ed. Chemical Photocatalysis. Germany: Walter de Gruyter, 2013. 151–168.

    Google Scholar 

  28. For recent examples with palladium catalysis, see: c) Xuan J, Zeng TT, Feng ZJ, Deng QH, Chen JR, Lu LQ, Xiao WJ. Angew Chem Int Ed, 2015, 54: 1625–1628

  29. Lang SB, O’Nele K, Tunge JA. J Am Chem Soc, 2014, 136: 13606–13609.

    Article  CAS  Google Scholar 

  30. With gold catalysis, see: e) Hopkinson MN, Sahoo B, Glorius F. Adv Synth Catal, 2014, 356: 2794–2800

  31. Shu XZ, Zhang M, He Y, Frei H, Toste FD. J Am Chem Soc, 2014, 136: 5844–5847.

    Article  CAS  Google Scholar 

  32. With nickel catalysis, see: g) Xuan J, Zeng TT, Chen JR, Lu LQ, Xiao WJ. Chem Eur J, 2015, 21: 4962–4965.

  33. With others, see: h) Feng ZJ, Xuan J, Xia XD, Ding W, Guo W, Chen JR, Zou YQ, Lu LQ, Xiao WJ. Org Biomol Chem, 2014, 12: 2037–2040

  34. Bergonzini G, Schindler CS, Wallentin CJ, Jacobsen EN, Stephenson CRJ. Chem Sci, 2014, 5: 112–116

    Article  CAS  Google Scholar 

  35. Zou YQ, Lu LQ, Fu L, Chang NJ, Rong J, Chen JR, Xiao WJ. Angew Chem Int Ed, 2011, 50: 7171–7175

    Article  CAS  Google Scholar 

  36. Xuan J, Cheng Y, An J, Lu LQ, Zhang XX, Xiao WJ. Chem Commun, 2011, 47: 8337–8339

    Article  CAS  Google Scholar 

  37. Zou YQ, Chen JR, Liu XP, Lu LQ, Davis RL, Jørgensen KA, Xiao WJ. Angew Chem Int Ed, 2012, 51: 784–788

    Article  CAS  Google Scholar 

  38. Xuan J, Feng ZJ, Duan SW, Xiao WJ. RSC Adv, 2012, 2: 4065–4068

    Article  CAS  Google Scholar 

  39. Xuan J, Xia XD, Zeng TT, Feng ZJ, Chen JR, Lu LQ, Xiao WJ. Angew Chem Int Ed, 2014, 53: 5653–5656, and Refs. [3c,3g,3k]

    Article  CAS  Google Scholar 

  40. Nguyen JD, D’Amato EM, Narayanam JM, Stephenson CR. Nat Chem, 2012, 4: 854–859

    Article  CAS  Google Scholar 

  41. For selected reviews, see: a) Wei Y, Shi M. Acc Chem Res, 2010, 43: 1005–1018

  42. Dai LX, Hou XL. Chiral Ferrocenes in Asymmetric Catalysis: Synthesis and Applications. Weinheim: Wiley-VCH, 2010

    Google Scholar 

  43. List B. Asymmetric Organocatalysis. Heidlberg: Springer, 2010

    Google Scholar 

  44. Denmark SE, Beutner GL. Angew Chem Int Ed, 2008, 47: 1560–1638

    Article  CAS  Google Scholar 

  45. Fu GC. Acc Chem Res, 2006, 39: 853–860

    Article  CAS  Google Scholar 

  46. Carnes ME, Collins MS, Lindquist NR, Percástegui EG, Pluth MD, Johnson DW. Chem Commun, 2014, 50: 73–75

    Article  CAS  Google Scholar 

  47. Patel K, Miljanić OS, Stoddart JF. Chem Commun, 2008, 44: 1853–1855

    Article  Google Scholar 

  48. de Sousa AL, Resck IS. J Braz Chem Soc, 2002, 13: 233–237

    Article  CAS  Google Scholar 

  49. Tipson RS, Clapp MA, Cretcher LH. J Org Chem, 1947, 12: 133–138

    Article  CAS  Google Scholar 

  50. For detailed condition optimization, including the evaluation of photocatalysts, solvents, light sources and bases, see Supporting Information

  51. General Procedure: In a 10 mL dry flask equipped with magnetic bar was charged with 1 (0.5 mmol, 1.0 equiv.) and Ir(bpy)2(dtbbpy)PF6 (2 mol%), 5 (0.75 mmol, 1.5 equiv.), KI (20 mol%), NaCO2CF3 (1.0 mmol, 2.0 equiv.) and MeCN (5 mL). The mixture was degassed via freeze-pump-thaw method (3 times) and then stirred under the irradiation of 7 W blue LEDs at room temperature for 12 h. The resultant mixture was filtered under vacuum to remove the solid. The filtrate was purified by flash chromatography on silica gel (petroleum ether/DCM=10:1) to afford the desired product 3. Analytical data of 1-allyl-2-phenyl-1,2,3,4-tetrahydroisoquinoline (3a): light yellow oil; 1H NMR (600 MHz, CDCl3) δ (ppm) 7.18 (m, 6H), 6.89 (d, J=8.2 Hz, 2H), 6.73 (t, J=7.1 Hz, 1H), 5.89–5.82 (m, 1H), 5.06 (t, J=13.1 Hz, 2H), 4.74 (t, J=6.7 Hz, 1H), 3.72–3.52 (m, 2H), 3.08–2.96 (m, 1H), 2.88 (dt, J=15.7, 5.2 Hz, 1H), 2.78–2.65 (m, 1H), 2.49 (dt, J=14.1, 7.2 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ (ppm) 149.4, 138.1, 135.6, 134.9, 129.2, 128.5, 127.3, 126.5, 125.7, 117.2, 117.0, 113.8, 59.3, 41.9, 40.9, 27.4; HRMS: m/z (ESI) calculated [M+H]+ 250.1590, measured 250.1594.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liangqiu Lu or Wen-Jing Xiao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Z., Zeng, T., Xuan, J. et al. C–H allylation of N-aryl-tetrahydroisoquinolines by merging photoredox catalysis with iodide catalysis. Sci. China Chem. 59, 171–174 (2016). https://doi.org/10.1007/s11426-015-5548-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-015-5548-x

Keywords

Navigation