Skip to main content
Log in

Polydiacetylene-based poly-ion complex enabling aggregation-induced emission and photodynamic therapy dual turn-on for on-demand pathogenic bacteria elimination

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Poly-ion complex (PIC) integrating non-antibiotic theranostics holds great promise in the combat against drug-resistant bacteria. Photosensitizers with aggregation-induced emission (AIE) characteristic are particularly intriguing theranostic agents, but incorporating them into antibacterial PIC to enable both fluorescence and reactive oxygen species (ROS) generation turn-on deems a great challenge. Here we report the development of a PIC that can dually boost the fluorescence and ROS generation in the presence of pathogen bacteria. The PIC is constructed based on an anionic polydiacetylene poly(deca-4,6-diynedioic acid) (PDDA), which completely degrades in the presence of ROS. A cationic polymer quaternized poly(2-(dimethylamino)ethyl methacrylate) (PQDMA) that can disrupt bacterial membrane is co-loaded together with a highly efficient AIE photosensitizer TPCI in the PIC. PIC is nonfluorescent initially in that PDDA can quench the AIE of TPCI in PIC. When pathogenic bacteria are present, they can disturb the assembly of PIC to release TPCI, the fluorescence of which turns on sensitively to indicate the existence of bacteria. The on-demand irradiation can be subsequently applied to excite TPCI, which generates ROS to degrade PDDA and deform the PIC. As a result, TPCI and PQDMA are completely released to eliminate bacteria through a synergy of turned-on photodynamic therapy (PDT) and membrane disruption. The highly efficient detection and inhibition against both Gram-negative and Gram-positive bacteria have validated this polydiacetylene-based PIC system as an effective non-antibiotic antibacterial theranostic platform as well as a new strategy to enable “turn-on” fluorescence sensing and imaging of AIE fluorophores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lewis K. Nat Rev Drug Discov, 2013, 12: 371–387

    Article  CAS  PubMed  Google Scholar 

  2. Aminov RI. Front Microbiol, 2010, 1: 134

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gaynes R. Emerg Infect Dis, 2017, 23: 849–853

    Article  PubMed Central  Google Scholar 

  4. Bush K, Courvalin P, Dantas G, Davies J, Eisenstein B, Huovinen P, Jacoby GA, Kishony R, Kreiswirth BN, Kutter E, Lerner SA, Levy S, Lewis K, Lomovskaya O, Miller JH, Mobashery S, Piddock LJV, Projan S, Thomas CM, Tomasz A, Tulkens PM, Walsh TR, Watson JD, Witkowski J, Witte W, Wright G, Yeh P, Zgurskaya HI. Nat Rev Microbiol, 2011, 9: 894–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Blair JMA, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJV. Nat Rev Microbiol, 2015, 13: 42–51

    Article  CAS  PubMed  Google Scholar 

  6. Neu HC. Science, 1992, 257: 1064–1073

    Article  CAS  PubMed  Google Scholar 

  7. Nathan C, Cars O. N Engl J Med, 2014, 371: 1761–1763

    Article  PubMed  Google Scholar 

  8. Cattoir V, Felden B. J Infect Dis, 2019, 220: 350–360

    Article  PubMed  Google Scholar 

  9. Wang Y, Yang Y, Shi Y, Song H, Yu C. Adv Mater, 2020, 32: 1904106

    Article  CAS  Google Scholar 

  10. Livermore DM. Lancet Infect Dis, 2005, 5: 450–459

    Article  PubMed  Google Scholar 

  11. Chernousova S, Epple M. Angew Chem Int Ed, 2013, 52: 1636–1653

    Article  CAS  Google Scholar 

  12. Qi L, Xu Z, Jiang X, Hu C, Zou X. Carbohydr Res, 2004, 339: 2693–2700

    Article  CAS  PubMed  Google Scholar 

  13. Sudarshan NR, Hoover DG, Knorr D. Food Biotechnol, 1992, 6: 257–272

    Article  CAS  Google Scholar 

  14. Hilpert K, Volkmer-Engert R, Walter T, Hancock REW. Nat Biotechnol, 2005, 23: 1008–1012

    Article  CAS  PubMed  Google Scholar 

  15. Boman HG. J Intern Med, 2003, 254: 197–215

    Article  CAS  PubMed  Google Scholar 

  16. Deka SR, Sharma AK, Kumar P. Curr Trends Med Chem, 2015, 15: 1179–1195

    Article  CAS  Google Scholar 

  17. Guo J, Qin J, Ren Y, Wang B, Cui H, Ding Y, Mao H, Yan F. Polym Chem, 2018, 9: 4611–4616

    Article  CAS  Google Scholar 

  18. Xu JW, Yao K, Xu ZK. Nanoscale, 2019, 11: 8680–8691

    Article  CAS  PubMed  Google Scholar 

  19. Chen Y, Gao Y, Chen Y, Liu L, Mo A, Peng Q. J Control Release, 2020, 328: 251–262

    Article  CAS  PubMed  Google Scholar 

  20. Liu Y, Qin R, Zaat SAJ, Breukink E, Heger M. J Clin Transl Res, 2015, 1: 140–167

    PubMed  PubMed Central  Google Scholar 

  21. Cao S, Shao J, Abdelmohsen LKEA, Hest JCM. Aggregate, 2022, 3: e128

    Article  Google Scholar 

  22. Ding X, Duan S, Ding X, Liu R, Xu FJ. Adv Funct Mater, 2018, 28: 1802140

    Article  Google Scholar 

  23. Cloutier M, Mantovani D, Rosei F. Trends Biotechnol, 2015, 33: 637–652

    Article  CAS  PubMed  Google Scholar 

  24. Mura S, Nicolas J, Couvreur P. Nat Mater, 2013, 12: 991–1003

    Article  CAS  PubMed  Google Scholar 

  25. Zheng P, Liu Y, Chen J, Xu W, Li G, Ding J. Chin Chem Lett, 2020, 31: 1178–1182

    Article  CAS  Google Scholar 

  26. Janib SM, Moses AS, MacKay JA. Adv Drug Deliver Rev, 2010, 62: 1052–1063

    Article  CAS  Google Scholar 

  27. Xie J, Lee S, Chen X. Adv Drug Deliver Rev, 2010, 62: 1064–1079

    Article  CAS  Google Scholar 

  28. Lammers T, Aime S, Hennink WE, Storm G, Kiessling F. Acc Chem Res, 2011, 44: 1029–1038

    Article  CAS  PubMed  Google Scholar 

  29. Wang L, Li LL, Ma HL, Wang H. Chin Chem Lett, 2013, 24: 351–358

    Article  CAS  Google Scholar 

  30. Traba C, Liang JF. J Control Release, 2015, 198: 18–25

    Article  CAS  PubMed  Google Scholar 

  31. Wei T, Yu Q, Chen H. Adv Healthcare Mater, 2019, 8: 1801381

    Article  CAS  Google Scholar 

  32. Moorcroft SCT, Jayne DG, Evans SD, Ong ZY. Macromol Biosci, 2018, 18: 1800207

    Article  Google Scholar 

  33. Li Q, Zhang Y, Huang X, Yang D, Weng L, Ou C, Song X, Dong X. Chem Eng J, 2021, 407: 127200

    Article  CAS  Google Scholar 

  34. Canaparo R, Foglietta F, Giuntini F, Della Pepa C, Dosio F, Serpe L. Molecules, 2019, 24: 1991

    Article  CAS  PubMed Central  Google Scholar 

  35. Pang Q, Zheng X, Luo Y, Ma L, Gao C. J Mater Chem B, 2017, 5: 8975–8982

    Article  CAS  PubMed  Google Scholar 

  36. Amstad E, Kim SH, Weitz DA. Angew Chem Int Ed, 2012, 51: 12499–12503

    Article  CAS  Google Scholar 

  37. Pitt WG, Husseini GA, Staples BJ. Expert Opin Drug Deliver, 2004, 1: 37–56

    Article  CAS  Google Scholar 

  38. Geilich BM, Gelfat I, Sridhar S, van de Ven AL, Webster TJ. Biomaterials, 2017, 119: 78–85

    Article  CAS  PubMed  Google Scholar 

  39. Parisi OI, Scrivano L, Sinicropi MS, Puoci F. Curr Opin Pharmacol, 2017, 36: 72–77

    Article  CAS  PubMed  Google Scholar 

  40. Leung NLC, Xie N, Yuan W, Liu Y, Wu Q, Peng Q, Miao Q, Lam JWY, Tang BZ. Chem Eur J, 2014, 20: 15349–15353

    Article  CAS  PubMed  Google Scholar 

  41. Zeng Q, Li Z, Dong Y, Di C, Qin A, Hong Y, Ji L, Zhu Z, Jim CKW, Yu G, Li Q, Li Z, Liu Y, Qin J, Tang BZ. Chem Commun, 2007, 1: 70–72

    Article  Google Scholar 

  42. Kang M, Zhang Z, Song N, Li M, Sun P, Chen X, Wang D, Tang BZ. Aggregate, 2020, 1: 80–106

    Article  Google Scholar 

  43. Lou X, Yang Y. Aggregate, 2020, 1: 19–30

    Article  Google Scholar 

  44. Tian S, Yue Q, Liu C, Li M, Yin M, Gao Y, Meng F, Tang BZ, Luo L. J Am Chem Soc, 2021, 143: 10054–10058

    Article  CAS  PubMed  Google Scholar 

  45. Li Y, Hu X, Tian S, Li Y, Zhang G, Zhang G, Liu S. Biomaterials, 2014, 35: 1618–1626

    Article  CAS  PubMed  Google Scholar 

  46. Tian S, Liu G, Wang X, Wu T, Yang J, Ye X, Zhang G, Hu J, Liu S. ACS Appl Mater Interfaces, 2016, 8: 3693–3702

    Article  CAS  PubMed  Google Scholar 

  47. Tian S, Li H, Li Z, Tang H, Yin M, Chen Y, Wang S, Gao Y, Yang X, Meng F, Lauher JW, Wang P, Luo L. Nat Commun, 2020, 11: 81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gao Y, Wang X, He X, He Z, Yang X, Tian S, Meng F, Ding D, Luo L, Tang BZ. Adv Funct Mater, 2019, 29: 1902673

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21877042, 22077038, 22107032), the National Basic Research Plan of China (2018YFA0208903), Postdoctoral Research Foundation of China (2017M622454, 2020T130038ZX), and Huazhong University Startup Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Luo.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic supplementary material

11426_2022_1317_MOESM1_ESM.pdf

Polydiacetylene-Based Poly-Ion Complex Enabling Aggregation-Induced Emission and Photodynamic Therapy Dual Turn-on for On-Demand Pathogenic Bacteria Elimination

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, S., Lu, Y., He, Z. et al. Polydiacetylene-based poly-ion complex enabling aggregation-induced emission and photodynamic therapy dual turn-on for on-demand pathogenic bacteria elimination. Sci. China Chem. 65, 1782–1790 (2022). https://doi.org/10.1007/s11426-022-1317-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1317-0

Keywords

Navigation