Skip to main content
Log in

Refining acceptor aggregation in nonfullerene organic solar cells to achieve high efficiency and superior thermal stability

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

With the rapid increase in photoelectric conversion efficiency of organic photovoltaics (OPVs), prolonging the operational lifetime of devices becomes one of the critical prerequisites for commercial applications. Guided by the theoretical calculations of molecular stacking and miscibility, we proposed an effective approach to simultaneously improve device performance and thermal stability of high-efficiency OPVs by refining the aggregation of Y-series acceptors. The key to this approach is deliberately designing an asymmetric Y-series acceptor, named Y6-CNO, which acts as a third component regulator to finely tune the degree of acceptor aggregation and crystallization in the benchmark PM6:Y6-BO system. Strikingly, a champion photovoltaic efficiency of 18.0% was achieved by introducing 15 wt% Y6-CNO into the PM6:Y6-BO system, significantly higher than the control binary cell (16.7%). Moreover, annealing at 100 °C for over 1,200 h does not markedly affect the photovoltaic performance of the optimal ternary devices, maintaining above 95% of the initial performance and exhibiting an exceptionally high T80 lifetime of 9,000 h under continuous thermal annealing. By contrast, binary devices suffer from excessive crystallization of acceptors with long-term annealing. Additionally, mixing thermodynamics combined with morphological characterizations were employed to elucidate the microstructure-thermal stability relationships. The ternary OPVs consisting of symmetric and asymmetric homologous acceptors form better charge transport channels and can effectively suppress excessive aggregation of acceptors under long-term annealing. This work demonstrates the effectiveness of refining acceptor aggregation via molecular design for highly efficient and stable nonfullerene-based OPVs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li S, Li CZ, Shi M, Chen H. ACS Energy Lett, 2020, 5: 1554–1567

    CAS  Google Scholar 

  2. Cheng P, Li G, Zhan X, Yang Y. Nat Photon, 2018, 12: 131–142

    CAS  Google Scholar 

  3. Wan X, Li C, Zhang M, Chen Y. Chem Soc Rev, 2020, 49: 2828–2842

    CAS  PubMed  Google Scholar 

  4. Wadsworth A, Moser M, Marks A, Little MS, Gasparini N, Brabec CJ, Baran D, McCulloch I. Chem Soc Rev, 2019, 48: 1596–1625

    CAS  PubMed  Google Scholar 

  5. Zhang ZG, Li Y. Angew Chem Int Ed, 2021, 60: 4422–4433

    CAS  Google Scholar 

  6. Liu Y, Liu B, Ma CQ, Huang F, Feng G, Chen H, Hou J, Yan L, Wei Q, Luo Q, Bao Q, Ma W, Liu W, Li W, Wan X, Hu X, Han Y, Li Y, Zhou Y, Zou Y, Chen Y, Li Y, Chen Y, Tang Z, Hu Z, Zhang ZG, Bo Z. Sci China Chem, 2021, 65: 224–268

    Google Scholar 

  7. Li Y, Xu G, Cui C, Li Y. Adv Energy Mater, 2018, 8: 1701791

    Google Scholar 

  8. Meng X, Zhang L, Xie Y, Hu X, Xing Z, Huang Z, Liu C, Tan L, Zhou W, Sun Y, Ma W, Chen Y. Adv Mater, 2019, 31: 1903649

    CAS  Google Scholar 

  9. Zhang K, Chen Z, Armin A, Dong S, Xia R, Yip HL, Shoaee S, Huang F, Cao Y. Sol RRL, 2018, 2: 1700169

    Google Scholar 

  10. Liu Y, Liu B, Ma CQ, Huang F, Feng G, Chen H, Hou J, Yan L, Wei Q, Luo Q, Bao Q, Ma W, Liu W, Li W, Wan X, Hu X, Han Y, Li Y, Zhou Y, Zou Y, Chen Y, Liu Y, Meng L, Li Y, Chen Y, Tang Z, Hu Z, Zhang ZG, Bo Z. Sci China Chem, 2022, 65: 1457–1497

    CAS  Google Scholar 

  11. Zuo L, Jo SB, Li Y, Meng Y, Stoddard RJ, Liu Y, Lin F, Shi X, Liu F, Hillhouse HW, Ginger DS, Chen H, Jen AKY. Nat Nanotechnol, 2022, 17: 53–60

    CAS  PubMed  Google Scholar 

  12. Xian K, Cui Y, Xu Y, Zhang T, Hong L, Yao H, An C, Hou J. J Phys Chem C, 2020, 124: 7691–7698

    CAS  Google Scholar 

  13. Wang R, Zhang C, Li Q, Zhang Z, Wang X, Xiao M. J Am Chem Soc, 2020, 142: 12751–12759

    CAS  PubMed  Google Scholar 

  14. Lee H, Park C, Sin DH, Park JH, Cho K. Adv Mater, 2018, 30: 1800453

    Google Scholar 

  15. Li T, Zhan X. Acta Chim Sin, 2021, 79: 257–283

    CAS  Google Scholar 

  16. Cheng S, Wang L, Guo C, Li D, Cai J, Miao W, Du B, Wang P, Liu D, Wang T. Polymer, 2021, 236: 124322

    CAS  Google Scholar 

  17. Sun R, Wang T, Wu Y, Zhang M, Ma Y, Xiao Z, Lu G, Ding L, Zheng Q, Brabec CJ, Li Y, Min J. Adv Funct Mater, 2021, 31: 2106846

    CAS  Google Scholar 

  18. Liao Q, Li B, Sun H, Koh CW, Zhang X, Liu B, Woo HY, Guo X. Mater Rep-Energy, 2021, 1: 100063

    CAS  Google Scholar 

  19. Yao J, Qiu B, Zhang ZG, Xue L, Wang R, Zhang C, Chen S, Zhou Q, Sun C, Yang C, Xiao M, Meng L, Li Y. Nat Commun, 2020, 11: 2726

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu J, Liu Y, Wang J, Li H, Zhou K, Gui R, Xian K, Qi Q, Yang X, Chen Y, Zhao W, Yin H, Zhao K, Zhou Z, Ye L. Adv Energy Mater, 2022, 12: 2201975

    CAS  Google Scholar 

  21. Cui Y, Xu Y, Yao H, Bi P, Hong L, Zhang J, Zu Y, Zhang T, Qin J, Ren J, Chen Z, He C, Hao X, Wei Z, Hou J. Adv Mater, 2021, 33: 2102420

    CAS  Google Scholar 

  22. Chong K, Xu X, Meng H, Xue J, Yu L, Ma W, Peng Q. Adv Mater, 2022, 34: 2109516

    CAS  Google Scholar 

  23. Sun R, Wu Y, Yang X, Gao Y, Chen Z, Li K, Qiao J, Wang T, Guo J, Liu C, Hao X, Zhu H, Min J. Adv Mater, 2022, 34: 2110147

    CAS  Google Scholar 

  24. He C, Pan Y, Ouyang Y, Shen Q, Gao Y, Yan K, Fang J, Chen Y, Ma CQ, Min J, Zhang C, Zuo L, Chen H. Energy Environ Sci, 2022, 15: 2537–2544

    CAS  Google Scholar 

  25. Li N, Perea JD, Kassar T, Richter M, Heumueller T, Matt GJ, Hou Y, Güldal NS, Chen H, Chen S, Langner S, Berlinghof M, Unruh T, Brabec CJ. Nat Commun, 2017, 8: 14541

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Ye L, Gao M, Hou J. Sci China Chem, 2021, 64: 1875–1887

    CAS  Google Scholar 

  27. Shi M, Wang T, Wu Y, Sun R, Wang W, Guo J, Wu Q, Yang W, Min J. Adv Energy Mater, 2021, 11: 2002709

    CAS  Google Scholar 

  28. Su Y, Zhang L, Ding Z, Zhang Y, Wu Y, Duan Y, Zhang Q, Zhang J, Han Y, Xu Z, Zhang R, Zhao K, Liu SF. Adv Energy Mater, 2022, 12: 2103940

    CAS  Google Scholar 

  29. Jørgensen M, Norrman K, Gevorgyan SA, Tromholt T, Andreasen B, Krebs FC. Adv Mater, 2012, 24: 580–612

    PubMed  Google Scholar 

  30. Peters IM, Hauch J, Brabec C, Sinha P. Joule, 2021, 5: 3137–3153

    Google Scholar 

  31. Cheng P, Zhan X. Chem Soc Rev, 2016, 45: 2544–2582

    CAS  PubMed  Google Scholar 

  32. Burlingame Q, Ball M, Loo YL. Nat Energy, 2020, 5: 947–949

    Google Scholar 

  33. Xian K, Geng Y, Ye L. Joule, 2022, 6: 941–944

    CAS  Google Scholar 

  34. Malla RB, Brown KM. Acta Astronaut, 2015, 107: 196–207

    Google Scholar 

  35. Hsieh YJ, Huang YC, Liu WS, Su YA, Tsao CS, Rwei SP, Wang L. ACS Appl Mater Interfaces, 2017, 9: 14808–14816

    CAS  PubMed  Google Scholar 

  36. Feng G, Li J, He Y, Zheng W, Wang J, Li C, Tang Z, Osvet A, Li N, Brabec CJ, Yi Y, Yan H, Li W. Joule, 2019, 3: 1765–1781

    CAS  Google Scholar 

  37. Chen F, Zhang Y, Wang Q, Gao M, Kirby N, Peng Z, Deng Y, Li M, Ye L. Chin J Chem, 2021, 39: 2570–2578

    CAS  Google Scholar 

  38. Müller C. Chem Mater, 2015, 27: 2740–2754

    Google Scholar 

  39. Yang W, Luo Z, Sun R, Guo J, Wang T, Wu Y, Wang W, Guo J, Wu Q, Shi M, Li H, Yang C, Min J. Nat Commun, 2020, 11: 1218

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Lai H, Chen H, Zhou J, Qu J, Wang M, Xie W, Xie Z, He F. J Phys Chem Lett, 2019, 10: 4737–4743

    CAS  PubMed  Google Scholar 

  41. Zhu L, Zhang M, Zhou G, Hao T, Xu J, Wang J, Qiu C, Prine N, Ali J, Feng W, Gu X, Ma Z, Tang Z, Zhu H, Ying L, Zhang Y, Liu F. Adv Energy Mater, 2020, 10: 1904234

    CAS  Google Scholar 

  42. Ma Y, Wang P, Lin W, Wang W, Cai D, Zheng Q. Chem Eng J, 2022, 432: 134393

    CAS  Google Scholar 

  43. Xian K, Liu Y, Liu J, Yu J, Xing Y, Peng Z, Zhou K, Gao M, Zhao W, Lu G, Zhang J, Hou J, Geng Y, Ye L. J Mater Chem A, 2022, 10: 3418–3429

    CAS  Google Scholar 

  44. Zhang Y, Ji Y, Zhang Y, Zhang W, Bai H, Du M, Wu H, Guo Q, Zhou E. Adv Funct Mater, 2022, 32: 2205115

    CAS  Google Scholar 

  45. Li D, Sun C, Yan T, Yuan J, Zou Y. ACS Cent Sci, 2021, 7: 1787–1797

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Li C, Fu H, Xia T, Sun Y. Adv Energy Mater, 2019, 9: 1900999

    Google Scholar 

  47. Wang J, Zhang M, Lin J, Zheng Z, Zhu L, Bi P, Liang H, Guo X, Wu J, Wang Y, Yu L, Li J, Lv J, Liu X, Liu F, Hou J, Li Y. Energy Environ Sci, 2022, 15: 1585–1593

    CAS  Google Scholar 

  48. Chen J, Cao J, Liu L, Xie L, Zhou H, Zhang J, Zhang K, Xiao M, Huang F. Adv Funct Mater, 2022, 32: 2200629

    CAS  Google Scholar 

  49. Hong L, Yao H, Wu Z, Cui Y, Zhang T, Xu Y, Yu R, Liao Q, Gao B, Xian K, Woo HY, Ge Z, Hou J. Adv Mater, 2019, 31: 1903441

    Google Scholar 

  50. Grimme S, Antony J, Ehrlich S, Krieg H. J Chem Phys, 2010, 132: 154104

    PubMed  Google Scholar 

  51. Takacs CJ, Sun Y, Welch GC, Perez LA, Liu X, Wen W, Bazan GC, Heeger AJ. J Am Chem Soc, 2012, 134: 16597–16606

    CAS  PubMed  Google Scholar 

  52. Yang D, Jiao Y, Yang L, Chen Y, Mizoi S, Huang Y, Pu X, Lu Z, Sasabe H, Kido J. J Mater Chem A, 2015, 3: 17704–17712

    CAS  Google Scholar 

  53. Li M, Zhou Y, Zhang J, Song J, Bo Z. J Mater Chem A, 2019, 7: 8889–8896

    CAS  Google Scholar 

  54. Ye L, Hu H, Ghasemi M, Wang T, Collins BA, Kim JH, Jiang K, Carpenter JH, Li H, Li Z, McAfee T, Zhao J, Chen X, Lai JLY, Ma T, Bredas JL, Yan H, Ade H. Nat Mater, 2018, 17: 253–260

    CAS  PubMed  Google Scholar 

  55. Ye L, Li S, Liu X, Zhang S, Ghasemi M, Xiong Y, Hou J, Ade H. Joule, 2019, 3: 443–458

    CAS  Google Scholar 

  56. Yang C, Zhang S, Ren J, Gao M, Bi P, Ye L, Hou J. Energy Environ Sci, 2020, 13: 2864–2869

    CAS  Google Scholar 

  57. Gao J, Ma X, Xu C, Wang X, Son JH, Jeong SY, Zhang Y, Zhang C, Wang K, Niu L, Zhang J, Woo HY, Zhang J, Zhang F. Chem Eng J, 2022, 428: 129276

    CAS  Google Scholar 

  58. Koster LJA, Kemerink M, Wienk MM, Maturová K, Janssen RAJ. Adv Mater, 2011, 23: 1670–1674

    CAS  PubMed  Google Scholar 

  59. Gupta V, Kyaw AKK, Wang DH, Chand S, Bazan GC, Heeger AJ. Sci Rep, 2013, 3: 1965

    PubMed  PubMed Central  Google Scholar 

  60. Kyaw AKK, Wang DH, Gupta V, Leong WL, Ke L, Bazan GC, Heeger AJ. ACS Nano, 2013, 7: 4569–4577

    CAS  PubMed  Google Scholar 

  61. Cui Y, Yao H, Hong L, Zhang T, Tang Y, Lin B, Xian K, Gao B, An C, Bi P, Ma W, Hou J. Natl Sci Rev, 2020, 7: 1239–1246

    CAS  PubMed  Google Scholar 

  62. Ma X, Wang J, Gao J, Hu Z, Xu C, Zhang X, Zhang F. Adv Energy Mater, 2020, 10: 2001404

    CAS  Google Scholar 

  63. Mukherjee S, Herzing AA, Zhao D, Wu Q, Yu L, Ade H, DeLongchamp DM, Richter LJ. J Mater Res, 2017, 32: 1921–1934

    CAS  Google Scholar 

  64. Ye L, Xiong Y, Li S, Ghasemi M, Balar N, Turner J, Gadisa A, Hou J, O’Connor BT, Ade H. Adv Funct Mater, 2017, 27: 1702016

    Google Scholar 

  65. Mukherjee S, Jiao X, Ade H. Adv Energy Mater, 2016, 6: 1600699

    Google Scholar 

  66. Baker JL, Jimison LH, Mannsfeld S, Volkman S, Yin S, Subramanian V, Salleo A, Alivisatos AP, Toney MF. Langmuir, 2010, 26: 9146–9151

    CAS  PubMed  Google Scholar 

  67. Page KA, Kusoglu A, Stafford CM, Kim S, Kline RJ, Weber AZ. Nano Lett, 2014, 14: 2299–2304

    CAS  PubMed  Google Scholar 

  68. Johnston DE, Yager KG, Hlaing H, Lu X, Ocko BM, Black CT. ACS Nano, 2014, 8: 243–249

    CAS  PubMed  Google Scholar 

  69. Hlaing H, Lu X, Hofmann T, Yager KG, Black CT, Ocko BM. ACS Nano, 2011, 5: 7532–7538

    CAS  PubMed  Google Scholar 

  70. Ma L, Yao H, Wang J, Xu Y, Gao M, Zu Y, Cui Y, Zhang S, Ye L, Hou J. Angew Chem Int Ed, 2021, 60: 15988–15994

    CAS  Google Scholar 

  71. Xiao Y, Lu X. Mater Today Nano, 2019, 5: 100030

    Google Scholar 

  72. Ma Y, Zhang M, Wan S, Yin P, Wang P, Cai D, Liu F, Zheng Q. Joule, 2021, 5: 197–209

    CAS  Google Scholar 

  73. Chaney TP, Levin AJ, Schneider SA, Toney MF. Mater Horiz, 2022, 9: 43–60

    CAS  PubMed  Google Scholar 

  74. Peng Z, Ye L, Ade H. Mater Horiz, 2022, 9: 577–606

    CAS  PubMed  Google Scholar 

  75. Shen X, Hu W, Russell TP. Macromolecules, 2016, 49: 4501–4509

    CAS  Google Scholar 

  76. Qin Y, Balar N, Peng Z, Gadisa A, Angunawela I, Bagui A, Kashani S, Hou J, Ade H. Joule, 2021, 5: 2129–2147

    CAS  Google Scholar 

  77. Liang Z, Li M, Wang Q, Qin Y, Stuard SJ, Peng Z, Deng Y, Ade H, Ye L, Geng Y. Joule, 2020, 4: 1278–1295

    CAS  Google Scholar 

  78. Yuan X, Zhao Y, Xie D, Pan L, Liu X, Duan C, Huang F, Cao Y. Joule, 2022, 6: 647–661

    CAS  Google Scholar 

  79. Gasparini N, Paleti SHK, Bertrandie J, Cai G, Zhang G, Wadsworth A, Lu X, Yip HL, McCulloch I, Baran D. ACS Energy Lett, 2020, 5: 1371–1379

    CAS  Google Scholar 

  80. Hultmark S, Paleti SHK, Harillo A, Marina S, Nugroho FAA, Liu Y, Ericsson LKE, Li R, Martín J, Bergqvist J, Langhammer C, Zhang F, Yu L, Campoy-Quiles M, Moons E, Baran D, Müller C. Adv Funct Mater, 2020, 30: 2005462

    CAS  Google Scholar 

  81. Lee JW, Sun C, Kim DJ, Ha MY, Han D, Park JS, Wang C, Lee WB, Kwon SK, Kim TS, Kim YH, Kim BJ. ACS Nano, 2021, 15: 19970–19980

    CAS  PubMed  Google Scholar 

  82. Li F, Yager KG, Dawson NM, Jiang YB, Malloy KJ, Qin Y. Chem Mater, 2014, 26: 3747–3756

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (52073207, 52121002) and the Fundamental Research Funds for the Central Universities. L. Ye also appreciates the Peiyang Scholar Program of Tianjin University for support. Z. Fei and S. Zhang thank the Haihe Laboratory of Sustainable Chemical Transformations for financial support. GIWAXS data acquisition at the beamline BL16B1 of Shanghai Synchrotron Radiation Facility (SSRF). Besides, the GIWAXS data were also checked at the beamline BL14B1 of SSRF and the beamline 1W1A of Beijing Synchrotron Radiation Facility (BSRF).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhuping Fei or Long Ye.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Supporting information

The supporting information is available online at http://chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic Supplementary Material

11426_2022_1394_MOESM1_ESM.pdf

Refining acceptor aggregation in nonfullerene organic solar cells to achieve high efficiency and superior thermal stability

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xian, K., Zhang, S., Xu, Y. et al. Refining acceptor aggregation in nonfullerene organic solar cells to achieve high efficiency and superior thermal stability. Sci. China Chem. 66, 202–215 (2023). https://doi.org/10.1007/s11426-022-1394-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-022-1394-y

Navigation