Skip to main content
Log in

Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Enhancing the terrestrial ecosystem carbon sink (referred to as terrestrial C sink) is an important way to slow down the continuous increase in atmospheric carbon dioxide (CO2) concentration and to achieve carbon neutrality target. To better understand the characteristics of terrestrial C sinks and their contribution to carbon neutrality, this review summarizes major progress in terrestrial C budget researches during the past decades, clarifies spatial patterns and drivers of terrestrial C sources and sinks in China and around the world, and examines the role of terrestrial C sinks in achieving carbon neutrality target. According to recent studies, the global terrestrial C sink has been increasing from a source of (−0.2±0.9) Pg C yr−1 (1 Pg=1015 g) in the 1960s to a sink of (1.9±1.1) Pg C yr−1 in the 2010s. By synthesizing the published data, we estimate terrestrial C sink of 0.20–0.25 Pg C yr−1 in China during the past decades, and predict it to be 0.15–0.52 Pg C yr−1 by 2060. The terrestrial C sinks are mainly located in the mid- and high latitudes of the Northern Hemisphere, while tropical regions act as a weak C sink or source. The C balance differs much among ecosystem types: forest is the major C sink; shrubland, wetland and farmland soil act as C sinks; and whether the grassland functions as C sink or source remains unclear. Desert might be a C sink, but the magnitude and the associated mechanisms are still controversial. Elevated atmospheric CO2 concentration, nitrogen deposition, climate change, and land cover change are the main drivers of terrestrial C sinks, while other factors such as fires and aerosols would also affect ecosystem C balance. The driving factors of terrestrial C sink differ among regions. Elevated CO2 concentration and climate change are major drivers of the C sinks in North America and Europe, while afforestation and ecological restoration are additionally important forcing factors of terrestrial C sinks in China. For future studies, we recommend the necessity for intensive and long term ecosystem C monitoring over broad geographic scale to improve terrestrial biosphere models for accurately evaluating terrestrial C budget and its dynamics under various climate change and policy scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, J.M., Faure, H., Faure-Denard, L., McGlade, J.M., and Woodward, F.I. (1990). Increases in terrestrial carbon storage from the Last Glacial Maximum to the present. Nature 348, 711–714.

    Article  CAS  Google Scholar 

  • Ahlström, A., Raupach, M.R., Schurgers, G., Smith, B., Arneth, A., Jung, M., Reichstein, M., Canadell, J.G., Friedlingstein, P., Jain, A.K., et al. (2015). The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348, 895–899.

    Article  PubMed  CAS  Google Scholar 

  • Ajtay, G.L., Ketner, P., and Duvigneaud, P. (1979). Terrestrial primary production and phytomass. In: Bolin, B., Degens, E.T., Kempe, S., and Ketner, P., eds. The Global Carbon Cycle. Chichester: John Wiley & Sons. 129–181.

    Google Scholar 

  • Arora, V.K., and Melton, J.R. (2018). Reduction in global area burned and wildfire emissions since 1930s enhances carbon uptake by land. Nat Commun 9, 1326.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baccini, A., Walker, W., Carvalho, L., Farina, M., Sulla-Menashe, D., and Houghton, R.A. (2017). Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science 358, 230–234.

    Article  CAS  PubMed  Google Scholar 

  • Bachman, S., Heisler-White, J.L., Pendall, E., Williams, D.G., Morgan, J. A., and Newcomb, J. (2010). Elevated carbon dioxide alters impacts of precipitation pulses on ecosystem photosynthesis and respiration in a semi-arid grassland. Oecologia 162, 791–802.

    Article  PubMed  Google Scholar 

  • Ballantyne, A.P., Alden, C.B., Miller, J.B., Tans, P.P., and White, J.W.C. (2012). Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years. Nature 488, 70–72.

    Article  CAS  PubMed  Google Scholar 

  • Barron-Gafford, G., Martens, D., Grieve, K., Biel, K., Kudeyarov, V., McLain, J.E.T., Lipson, D., and Murthy, R. (2005). Growth of eastern cottonwoods (Populus deltoides) in elevated [CO2] stimulates stand-level respiration and rhizodeposition of carbohydrates, accelerates soil nutrient depletion, yet stimulates above- and belowground biomass production. Glob Change Biol 11, 1220–1233.

    Article  Google Scholar 

  • Batjes, N.H. (1996). Total carbon and nitrogen in the soils of the world. Eur J Soil Sci 47, 151–163.

    Article  CAS  Google Scholar 

  • Batjes, N.H. (2019). Technologically achievable soil organic carbon sequestration in world croplands and grasslands. Land Degrad Dev 30, 25–32.

    Article  Google Scholar 

  • Battle, M., Bender, M.L., Tans, P.P., White, J.W.C., Ellis, J.T., Conway, T., and Francey, R.J. (2000). Global carbon sinks and their variability inferred from atmospheric O2 and δ13C. Science 287, 2467–2470.

    Article  CAS  PubMed  Google Scholar 

  • Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., Rödenbeck, C., Arain, M.A., Baldocchi, D., Bonan, G.B., et al. (2010). Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329, 834–838.

    Article  CAS  PubMed  Google Scholar 

  • Bellassen, V., Viovy, N., Luyssaert, S., Maire, G., Schelhaas, M.J., and Ciais, P. (2011). Reconstruction and attribution of the carbon sink of European forests between 1950 and 2000. Glob Change Biol 17, 3274–3292.

    Article  Google Scholar 

  • Biederman, J.A., Scott, R.L., Arnone III, J.A., Jasoni, R.L., Litvak, M.E., Moreo, M.T., Papuga, S.A., Ponce-Campos, G.E., Schreiner-McGraw, A.P., and Vivoni, E.R. (2018). Shrubland carbon sink depends upon winter water availability in the warm deserts of North America. Agric For Meteor 249, 407–419.

    Article  Google Scholar 

  • Birdsey, R.A., and Heath, L.S. (1995). Carbon changes in U.S. forests. In: Joyce, L.A., ed. Productivity of America’s Forest and Climatic Change. Colorado: Forest Service, U.S. Department of Agriculture. 56–70.

    Google Scholar 

  • Birdsey, R.A., Plantinga, A.J., and Heath, L.S. (1993). Past and prospective carbon storage in United States forests. For Ecol Manage 58, 33–40.

    Article  Google Scholar 

  • Blanco-Canqui, H., and Ruis, S.J. (2018). No-tillage and soil physical environment. Geoderma 326, 164–200.

    Article  Google Scholar 

  • Bodesheim, P., Jung, M., Gans, F., Mahecha, M.D., and Reichstein, M. (2018). Upscaled diurnal cycles of land-atmosphere fluxes: a new global half-hourly data product. Earth Syst Sci Data 10, 1327–1365.

    Article  Google Scholar 

  • Bohn, H.L. (1982). Estimate of organic carbon in world soils: II. Soil Sci Soc Am J 46, 1118–1119.

    Article  Google Scholar 

  • Bolin, B. (1977). Changes of land biota and their importance for the carbon cycle. Science 196, 613–615.

    Article  CAS  PubMed  Google Scholar 

  • Bonan, G.B. (2008). Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449.

    Article  CAS  PubMed  Google Scholar 

  • Bond-Lamberty, B., Peckham, S.D., Ahl, D.E., and Gower, S.T. (2007). Fire as the dominant driver of central Canadian boreal forest carbon balance. Nature 450, 89–92.

    Article  CAS  PubMed  Google Scholar 

  • Bousquet, P., Ciais, P., Peylin, P., Ramonet, M., and Monfray, P. (1999). Inverse modeling of annual atmospheric CO2 sources and sinks: 1. Method and control inversion. J Geophys Res 104, 26161–26178.

    Article  CAS  Google Scholar 

  • Brandt, M., Hiernaux, P., Rasmussen, K., Tucker, C.J., Wigneron, J.P., Diouf, A.A., Herrmann, S.M., Zhang, W., Kergoat, L., Mbow, C., et al. (2019). Changes in rainfall distribution promote woody foliage production in the Sahel. Commun Biol 2, 133.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brienen, R.J.W., Phillips, O.L., Feldpausch, T.R., Gloor, E., Baker, T.R., Lloyd, J., Lopez-Gonzalez, G., Monteagudo-Mendoza, A., Malhi, Y., Lewis, S.L., et al. (2015). Long-term decline of the Amazon carbon sink. Nature 519, 344–348.

    Article  CAS  PubMed  Google Scholar 

  • Briggs, J.M., Knapp, A.K., Blair, J.M., Heisler, J.L., Hoch, G.A., Lett, M. S., and McCarron, J.K. (2005). An ecosystem in transition: causes and consequences of the conversion of mesic grassland to shrubland. BioScience 55, 243–254.

    Article  Google Scholar 

  • Broecker, W.S., Takahashi, T., Simpson, H.J., and Peng, T.H. (1979). Fate of fossil fuel carbon dioxide and the global carbon budget. Science 206, 409–418.

    Article  CAS  PubMed  Google Scholar 

  • Bühlmann, T., Körner, C., and Hiltbrunner, E. (2016). Shrub expansion of Alnus viridis drives former montane grassland into nitrogen saturation. Ecosystems 19, 968–985.

    Article  CAS  Google Scholar 

  • Canadell, J.G., Ciais, P., Gurney, K., Le Quéré, C., Piao, S., Raupach, M.R., and Sabine, C.L. (2011). An international effort to quantify regional carbon fluxes. Eos Trans AGU 92, 81–82.

    Article  Google Scholar 

  • Cao, M.K., Tao, B., Li, K.R., Shao, X.M., and Prience, S.D. (2003a). Interannual variaration in terrestrial ecosystem carbon fluxes in China from 1981 to 2000. Acta Bot Sin 45, 552–560.

    Google Scholar 

  • Cao, M., Prince, S.D., Li, K., Tao, B., Small, J., and Shao, X. (2003b). Response of terrestrial carbon uptake to climate interannual variability in China. Glob Change Biol 9, 536–546.

    Article  Google Scholar 

  • Cao, M., and Woodward, F.I. (1998a). Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature 393, 249–252.

    Article  CAS  Google Scholar 

  • Cao, M., and Woodward, F.I. (1998b). Net primary and ecosystem production and carbon stocks of terrestrial ecosystems and their responses to climate change. Glob Change Biol 4, 185–198.

    Article  Google Scholar 

  • Carter, A.J., and Scholes, R.J. (2000). Spatial global database of soil properties. In: IGBP Global Soil Data Task (Database on CD-ROM). International Geosphere-Biosphere Programme (IGBP) Data Information Systems, producer. Toulouse: IGBP.

    Google Scholar 

  • Carvalhais, N., Forkel, M., Khomik, M., Bellarby, J., Jung, M., Migliavacca, M., Mu, M., Saatchi, S., Santoro, M., Thurner, M., et al. (2014). Global covariation of carbon turnover times with climate in terrestrial ecosystems. Nature 514, 213–217.

    Article  CAS  PubMed  Google Scholar 

  • Caspersen, J.P., Pacala, S.W., Jenkins, J.C., Hurtt, G.C., Moorcroft, P.R., and Birdsey, R.A. (2000). Contributions of land-use history to carbon accumulation in U.S. forests. Science 290, 1148–1151.

    Article  CAS  PubMed  Google Scholar 

  • Cervarich, M., Shu, S., Jain, A.K., Arneth, A., Canadell, J., Friedlingstein, P., Houghton, R.A., Kato, E., Koven, C., Patra, P., et al. (2016). The terrestrial carbon budget of South and Southeast Asia. Environ Res Lett 11, 105006.

    Article  Google Scholar 

  • Chang, J., Ciais, P., Gasser, T., Smith, P., Herrero, M., Havlík, P., Obersteiner, M., Guenet, B., Goll, D.S., Li, W., et al. (2021). Climate warming from managed grasslands cancels the cooling effect of carbon sinks in sparsely grazed and natural grasslands. Nat Commun 12, 118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang, J., Ciais, P., Wang, X., Piao, S., Asrar, G., Betts, R., Chevallier, F., Dury, M., François, L., Frieler, K., et al. (2017). Benchmarking carbon fluxes of the ISIMIP2a biome models. Environ Res Lett 12, 045002.

    Article  CAS  Google Scholar 

  • Chang, J., Ciais, P., Viovy, N., Vuichard, N., Herrero, M., Havlík, P., Wang, X., Sultan, B., and Soussana, J.F. (2016). Effect of climate change, CO2 trends, nitrogen addition, and land-cover and management intensity changes on the carbon balance of European grasslands. Glob Change Biol 22, 338–350.

    Article  Google Scholar 

  • Chapin, F.S.III., Matson, P.A., and Mooney, H.A. (2011). Principles of Terrestrial Ecosystem Ecology. 2nd ed. New York: Springer-Verlag.

    Book  Google Scholar 

  • Chen, J.M., Ju, W., Ciais, P., Viovy, N., Liu, R., Liu, Y., and Lu, X. (2019b). Vegetation structural change since 1981 significantly enhanced the terrestrial carbon sink. Nat Commun 10, 4259.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen, Z., Yu, G., and Wang, Q. (2019a). Magnitude, pattern and controls of carbon flux and carbon use efficiency in China’s typical forests. Glob Planet Change 172, 464–473.

    Article  Google Scholar 

  • Cheng, K., Zheng, J., Nayak, D., Smith, P., and Pan, G. (2013). Reevaluating the biophysical and technologically attainable potential of topsoil carbon sequestration in China’s cropland. Soil Use Manage 29, 501–509.

    Article  Google Scholar 

  • Cheng, L.L., Que, X.E., Yang, L., Yao, X.L., and Lu, Q. (2020). China’s desert ecosystem: functions rising and services enhancing (in Chinese). Bull Chin Acad Sci 35, 690–698.

    Google Scholar 

  • Chuai, X., Qi, X., Zhang, X., Li, J., Yuan, Y., Guo, X., Huang, X., Park, S., Zhao, R., Xie, X., et al. (2018). Land degradation monitoring using terrestrial ecosystem carbon sinks/sources and their response to climate change in China. Land Degrad Dev 29, 3489–3502.

    Article  Google Scholar 

  • Churkina, G. (2008). Modeling the carbon cycle of urban systems. Ecol Model 216, 107–113.

    Article  Google Scholar 

  • Churkina, G. (2016). The role of urbanization in the global carbon cycle. Front Ecol Evol 3, 144.

    Article  Google Scholar 

  • Churkina, G., Brown, D.G., and Keoleian, G. (2010). Carbon stored in human settlements: the conterminous United States. Glob Change Biol 16, 135–143.

    Article  Google Scholar 

  • Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogée, J., Allard, V., Aubinet, M., Buchmann, N., Bernhofer, C., Carrara, A., et al. (2005). Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529–533.

    Article  CAS  PubMed  Google Scholar 

  • Ciais, P., Tans, P.P., Trolier, M., White, J.W.C., and Francey, R.J. (1995a). A large northern hemisphere terrestrial CO2 sink indicated by the13C/12C ratio of atmospheric CO2. Science 269, 1098–1102.

    Article  CAS  PubMed  Google Scholar 

  • Ciais, P., Tans, P.P., White, J.W.C., Trolier, M., Francey, R.J., Berry, J.A., Randall, D.R., Sellers, P.J., Collatz, J.G., and Schimel, D.S. (1995b). Partitioning of ocean and land uptake of CO2 as inferred by δ13C measurements from the NOAA Climate Monitoring and Diagnostics Laboratory Global Air Sampling Network. J Geophys Res 100, 5051–5070.

    Article  CAS  Google Scholar 

  • Ciais, P., Tan, J., Wang, X., Roedenbeck, C., Chevallier, F., Piao, S.L., Moriarty, R., Broquet, G., Le Quéré, C., Canadell, J.G., et al. (2019). Five decades of northern land carbon uptake revealed by the interhemispheric CO2 gradient. Nature 568, 221–225.

    Article  CAS  PubMed  Google Scholar 

  • Ciais, P., Yao, Y., Gasser, T., Baccini, A., Wang, Y., Lauerwald, R., Peng, S., Bastos, A., Li, W., Raymond, P.A., et al. (2021). Empirical estimates of regional carbon budgets imply reduced global soil heterotrophic respiration. Natl Sci Rev 8, nwaa145.

    Article  PubMed  Google Scholar 

  • Cole, J.J., Prairie, Y.T., Caraco, N.F., McDowell, W.H., Tranvik, L.J., Striegl, R.G., Duarte, C.M., Kortelainen, P., Downing, J.A., Middelburg, J.J., et al. (2007). Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10, 172–185.

    Article  CAS  Google Scholar 

  • Creutzig, F., Agoston, P., Minx, J.C., Canadell, J.G., Andrew, R.M., Quéré, C.L., Peters, G.P., Sharifi, A., Yamagata, Y., and Dhakal, S. (2016). Urban infrastructure choices structure climate solutions. Nat Clim Change 6, 1054–1056.

    Article  Google Scholar 

  • Davies, Z.G., Dallimer, M., Edmondson, J.L., Leake, J.R., and Gaston, K.J. (2013). Identifying potential sources of variability between vegetation carbon storage estimates for urban areas. Environ Pollut 183, 133–142.

    Article  CAS  PubMed  Google Scholar 

  • Del Grosso, S.J., and Baranski, M. (2016). U.S. agriculture and forestry greenhouse gas inventory: 1990–2013. USDA Tech Bull 1943, 137.

    Google Scholar 

  • Delcourt, H.R., and Harris, W.F. (1980). Carbon budget of the southeastern U.S. biota: analysis of historical change in trend from source to sink. Science 210, 321–323.

    Article  CAS  PubMed  Google Scholar 

  • Department of Climate Change, National Development and Reform Commission of China. (2004). Initial National Communication on Climate Change of the People’s Republic of China. Beijing: NDRCC. Available from: URL: https://newsroom.unfccc.int/non-annex-I-NCs.

    Google Scholar 

  • Department of Climate Change, National Development and Reform Commission of China. (2012). Second National Communication on Climate Change of the People’s Republic of China. Beijing: NDRCC. Available from: URL: https://newsroom.unfccc.int/non-annex-I-NCs.

    Google Scholar 

  • Department of Climate Change, National Development and Reform Commission of China. (2016). First Biennial Update Report on Climate Change of the People’s Republic of China. Beijing: NDRCC. Available from: URL: https://newsroom.unfccc.int/BURs.

    Google Scholar 

  • Department of Climate Change, National Development and Reform Commission of China. (2018). Second Biennial Update Report on Climate Change of the People’s Republic of China. Beijing: MEEC. Available from: URL: https://newsroom.unfccc.int/BURs.

    Google Scholar 

  • Department of Climate Change, Ministry of Ecology and Environment of China. (2018). Third National Communication on Climate Change of the People’s Republic of China. Beijing: MEEC. Available from: URL: https://newsroom.unfccc.int/non-annex-I-NCs.

    Google Scholar 

  • Ding, J., Chen, L., Ji, C., Hugelius, G., Li, Y., Liu, L., Qin, S., Zhang, B., Yang, G., Li, F., et al. (2017). Decadal soil carbon accumulation across Tibetan permafrost regions. Nat Geosci 10, 420–424.

    Article  CAS  Google Scholar 

  • Dixon, R.K., Solomon, A.M., Brown, S., Houghton, R.A., Trexier, M.C., and Wisniewski, J. (1994). Carbon pools and flux of global forest ecosystems. Science 263, 185–190.

    Article  CAS  PubMed  Google Scholar 

  • Dlugokencky, E., and Tans, P. (2020). Trends in atmospheric carbon dioxide. National Oceanic and Atmospheric Administration, Earth System Research Laboratory. Available from: URL: http://www.esrl.noaa.gov/gmd/ccgg/trends/global.html

  • Dolman, A.J., Shvidenko, A., Schepaschenko, D., Ciais, P., Tchebakova, N., Chen, T., van der Molen, M.K., Belelli Marchesini, L., Maximov, T. C., Maksyutov, S., et al. (2012). An estimate of the terrestrial carbon budget of Russia using inventory-based, eddy covariance and inversion methods. Biogeosciences 9, 5323–5340.

    Article  CAS  Google Scholar 

  • Donohue, R.J., Roderick, M.L., McVicar, T.R., and Farquhar, G.D. (2013). Impact of CO2 fertilization on maximum foliage cover across the globe’s warm, arid environments. Geophys Res Lett 40, 3031–3035.

    Article  CAS  Google Scholar 

  • Doughty, C.E., Metcalfe, D.B., Girardin, C.A.J., Amézquita, F.F., Cabrera, D.G., Huasco, W.H., Silva-Espejo, J.E., Araujo-Murakami, A., da Costa, M.C., Rocha, W., et al. (2015). Drought impact on forest carbon dynamics and fluxes in Amazonia. Nature 519, 78–82.

    Article  CAS  PubMed  Google Scholar 

  • Duan, H., Zhou, S., Jiang, K., Bertram, C., Harmsen, M., Kriegler, E., van Vuuren, D.P., Wang, S., Fujimori, S., Tavoni, M., et al. (2021). Assessing China’s efforts to pursue the 1.5°C warming limit. Science 372, 378–385.

    Article  CAS  PubMed  Google Scholar 

  • Duan, X.N., Wang, X.K., Fei, L., and Ouyang, Z.Y. (2008). Primary evaluation of carbon sequestration potential of wetlands in China. Acta Ecol Sin 28, 463–469.

    Article  CAS  Google Scholar 

  • Editorial Board of China Land Cover Atlas. (2017). Land cover atlas of the People’s Republic of China 1:1,000,000 (in Chinese). Beijing: China Map Publishing House.

    Google Scholar 

  • Erb, K.H., Kastner, T., Plutzar, C., Bais, A.L.S., Carvalhais, N., Fetzel, T., Gingrich, S., Haberl, H., Lauk, C., Niedertscheider, M., et al. (2018). Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature 553, 73–76.

    Article  CAS  PubMed  Google Scholar 

  • Eswaran, H., Van Den Berg, E., and Reich, P. (1993). Organic carbon in soils of the world. Soil Sci Soc Am J 57, 192–194.

    Article  Google Scholar 

  • Fan, S., Gloor, M., Mahlman, J., Pacala, S., Sarmiento, J., Takahashi, T., and Tans, P. (1998). A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models. Science 282, 442–446.

    Article  CAS  PubMed  Google Scholar 

  • Fang, J.Y., Liu, G.H., and Xu, S.L. (1996a). Carbon pool of terrestrial ecosystems in China. In: Wang, G.C., and Wen, Y.P., eds. Greenhouse Gas Concentration and Emission Monitoring and Related Processes (in Chinese). Beijing: China Environmental Science Press. 109–128.

    Google Scholar 

  • Fang, J.Y., Liu, G.H., and Xu, S.L. (1996b). Biomass and net production of forest vegetation in China (in Chinese). Acta Ecol Sin 16, 497–508.

    Google Scholar 

  • Fang, J.Y., Liu, G.H., and Xu, S.L. (1996c). Carbon cycling in terrestrial ecosystems in China and its global implications. In: Wang, G.C., and Wen, Y.P., eds. Greenhouse Gas Concentration and Emission Monitoring and Related Processes (in Chinese). Beijing: China Environmental Science Press. 129–139.

    Google Scholar 

  • Fang, J.Y., Tang, Y.H., and Lin, J.D. (2000). Global Ecology—Climate Change and Ecological Response (in Chinese). Beijing: Higher Education Press.

    Google Scholar 

  • Fang, J.Y., Piao, S.L., and Zhao, S.Q. (2001a). The carbon sink: the role of the middle and high latitudes terrestrial ecosystems in the northern hemisphere (in Chinese). Chin J Plant Ecol 25, 414–419.

    Google Scholar 

  • Fang, J., Chen, A., Peng, C., Zhao, S., and Ci, L. (2001b). Changes in forest biomass carbon storage in China between 1949 and 1998. Science 292, 2320–2322.

    Article  CAS  PubMed  Google Scholar 

  • Fang, J.Y., Chen, A.P., Zhao, S.Q., and Ci, L.J. (2002). Estimating biomass carbon of China’s forests: supplementary notes on report published in Science (291: 2320–2322) by Fang et al. (2001) (in Chinese). Chin J Plant Eco 26, 243–249.

    CAS  Google Scholar 

  • Fang, J., Piao, S., Field, C.B., Pan, Y., Guo, Q., Zhou, L., Peng, C., and Tao, S. (2003). Increasing net primary production in China from 1982 to 1999. Front Ecol Environ 1, 293–297.

    Article  Google Scholar 

  • Fang, J., Piao, S., He, J., and Ma, W. (2004). Increasing terrestrial vegetation activity in China, 1982–1999. Sci China Ser C Life Sci 47, 229–240.

    Google Scholar 

  • Fang, J.Y., and Guo, Z.D. (2007). Looking for missing carbon sinks from terrestrial ecosystems (in Chinese). Chin J Nat 29, 1–6.

    Google Scholar 

  • Fang, J.Y., Guo, Z.D., Piao, S.L., and Chen, A.P. (2007). Terrestrial vegetation carbon sinks in China, 1981–2000. Sci China Ser D 50, 1341–1350.

    Article  CAS  Google Scholar 

  • Fang, J.Y., Yang, Y.H., Ma, W.H., Mohammat, A., and Shen, H.H. (2010). Ecosystem carbon stocks and their changes in China’s grasslands. Sci China Life Sci 53, 757–765.

    Article  CAS  PubMed  Google Scholar 

  • Fang, J., Guo, Z., Hu, H., Kato, T., Muraoka, H., and Son, Y. (2014a). Forest biomass carbon sinks in East Asia, with special reference to the relative contributions of forest expansion and forest growth. Glob Change Biol 20, 2019–2030.

    Article  Google Scholar 

  • Fang, J., Kato, T., Guo, Z., Yang, Y., Hu, H., Shen, H., Zhao, X., Kishimoto-Mo, A.W., Tang, Y., and Houghton, R.A. (2014b). Evidence for environmentally enhanced forest growth. Proc Natl Acad Sci USA 111, 9527–9532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang, J.Y., Huang, Y., Zhu, J.L., Sun, W.J., and Hu, H.F. (2015). Carbon budget of forest ecosystems and its driving forces (in Chinese). China Bas Sci 17, 20–25.

    Google Scholar 

  • Fang, J., Yu, G., Liu, L., Hu, S., and ChapinIII, F.S. (2018a). Climate change, human impacts, and carbon sequestration in China. Proc Natl Acad Sci USA 115, 4015–4020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang, J., Geng, X., Zhao, X., Shen, H., and Hu, H. (2018b). How many areas of grasslands are there in China? Chin Sci Bull 63, 1731–1739.

    Article  Google Scholar 

  • Fang, J.Y., Wang, S.P., Yue, C., Jiang Z.L., and Tang, Z.Y. (2018c). Global carbon balance and contribution emissions (in Chinese). In: Carbon Emissions from China and the World—Some Views on Relationships between Carbon Emissions and Socio-economic Development. Beijing: Science Press.

    Google Scholar 

  • FAO. (2021). FAO Stat Database. Available from URL: http://www.fao.org/faostat/en/#data.

  • Fernández-Martínez, M., Sardans, J., Chevallier, F., Ciais, P., Obersteiner, M., Vicca, S., Canadell, J.G., Bastos, A., Friedlingstein, P., Sitch, S., et al. (2019). Global trends in carbon sinks and their relationships with CO2 and temperature. Nat Clim Change 9, 73–79.

    Article  CAS  Google Scholar 

  • Field, C.B., and Fung, I.Y. (1999). The not-so-big U.S. carbon sink. Science 285, 544–545.

    Article  CAS  Google Scholar 

  • Foley, J.A. (1995). An equilibrium model of the terrestrial carbon budget. Tellus B 47, 310–319.

    Article  Google Scholar 

  • Frankenberg, C., Yin, Y., Byrne, B., He, L., and Gentine, P. (2021). Comment on “Recent global decline of CO2 fertilization effects on vegetation photosynthesis”. Science 373, abg2947.

    Article  CAS  Google Scholar 

  • Friedlingstein, P. (2015). Carbon cycle feedbacks and future climate change. Phil Trans R Soc A 373, 20140421.

    Article  PubMed  CAS  Google Scholar 

  • Friedlingstein, P., Cox, P., Betts, R., Bopp, L., von Bloh, W., Brovkin, V., Cadule, P., Doney, S., Eby, M., Fung, I., et al. (2006). Climate-carbon cycle feedback analysis: Results from the C4MIP model intercomparison. J Clim 19, 3337–3353.

    Article  Google Scholar 

  • Friedlingstein, P., Meinshausen, M., Arora, V.K., Jones, C.D., Anav, A., Liddicoat, S.K., and Knutti, R. (2014). Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J Clim 27, 511–526.

    Article  Google Scholar 

  • Friedlingstein, P., O’Sullivan, M., Jones, M.W., Andrew, R.M., Hauck, J., Olsen, A., Peters, G.P., Peters, W., Pongratz, J., Sitch, S., et al. (2020). Global carbon budget 2020. Earth Syst Sci Data 12, 3269–3340.

    Article  Google Scholar 

  • Fu, D., Chen, B., Zhang, H., Wang, J., Black, T.A., Amiro, B.D., Bohrer, G., Bolstad, P., Coulter, R., Rahman, A.F., et al. (2014). Estimating landscape net ecosystem exchange at high spatial-temporal resolution based on Landsat data, an improved upscaling model framework, and eddy covariance flux measurements. Remote Sens Environ 141, 90–104.

    Article  Google Scholar 

  • Fuss, S., Lamb, W.F., Callaghan, M.W., Hilaire, J., Creutzig, F., Amann, T., Beringer, T., de Oliveira Garcia, W., Hartmann, J., Khanna, T., et al. (2018). Negative emissions—Part 2: costs, potentials and side effects. Environ Res Lett 13, 063002.

    Article  CAS  Google Scholar 

  • Gampe, D., Zscheischler, J., Reichstein, M., O’Sullivan, M., Smith, W.K., Sitch, S., and Buermann, W. (2021). Increasing impact of warm droughts on northern ecosystem productivity over recent decades. Nat Clim Chang 11, 772–779.

    Article  Google Scholar 

  • Gatti, L.V., Basso, L.S., Miller, J.B., Gloor, M., Gatti Domingues, L., Cassol, H.L.G., Tejada, G., Aragão, L.E.O.C., Nobre, C., Peters, W., et al. (2021). Amazonia as a carbon source linked to deforestation and climate change. Nature 595, 388–393.

    Article  CAS  PubMed  Google Scholar 

  • Gatti, L.V., Gloor, M., Miller, J.B., Doughty, C.E., Malhi, Y., Domingues, L.G., Basso, L.S., Martinewski, A., Correia, C.S.C., Borges, V.F., et al. (2014). Drought sensitivity of Amazonian carbon balance revealed by atmospheric measurements. Nature 506, 76–80.

    Article  CAS  PubMed  Google Scholar 

  • Ge, R., He, H., Ren, X., Zhang, L., Yu, G., Smallman, T.L., Zhou, T., Yu, S. Y., Luo, Y., Xie, Z., et al. (2018). Underestimated ecosystem carbon turnover time and sequestration under the steady state assumption: a perspective from long-term data assimilation. Glob Change Biol 25, 938–953.

    Article  Google Scholar 

  • Ge, S., and Zhao, S. (2017). Organic carbon storage change in China’s urban landfills from 1978–2014. Environ Res Lett 12, 104013.

    Article  CAS  Google Scholar 

  • Global Soil Data Task. (2014). Global Soil Data Products CD-ROM Contents (IGBP-DIS). Oak Ridge: Distributed Archive Center for Biogeochemical Dynamics, Oak Ridge National Laboratory. Available from: URL: https://doi.org/10.3334/ORNLDAAC/565.

    Google Scholar 

  • Gloor, M., Gatti, L., Brienen, R., Feldpausch, T.R., Phillips, O.L., Miller, J., Ometto, J.P., Rocha, H., Baker, T., de Jong, B., et al. (2012). The carbon balance of South America: a review of the status, decadal trends and main determinants. Biogeosciences 9, 5407–5430.

    Article  CAS  Google Scholar 

  • Goulden, M.L., Munger, J.W., Fan, S.M., Daube, B.C., and Wofsy, S.C. (1996). Exchange of carbon dioxide by a deciduous forest: response to interannual climate variability. Science 271, 1576–1578.

    Article  CAS  Google Scholar 

  • Green, J.K., Seneviratne, S.I., Berg, A.M., Findell, K.L., Hagemann, S., Lawrence, D.M., and Gentine, P. (2019). Large influence of soil moisture on long-term terrestrial carbon uptake. Nature 565, 476–479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griscom, B.W., Adams, J., Ellis, P.W., Houghton, R.A., Lomax, G., Miteva, D.A., Schlesinger, W.H., Shoch, D., Siikamäki, J.V., Smith, P., et al. (2017). Natural climate solutions. Proc Natl Acad Sci USA 114, 11645–11650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griscom, B.W., Lomax, G., Kroeger, T., Fargione, J.E., Adams, J., Almond, L., Bossio, D., Cook-Patton, S.C., Ellis, P.W., Kennedy, C.M., et al. (2019). We need both natural and energy solutions to stabilize our climate. Glob Change Biol 25, 1889–1890.

    Article  Google Scholar 

  • Guo, Z.D., Hu, H.F., Li, P., Li, N.Y., and Fang, J.Y. (2013). Spatio-temporal changes in biomass carbon sinks in China’s forests from 1977 to 2008. Sci China Life Sci 56, 661–671.

    Article  CAS  PubMed  Google Scholar 

  • Gurney, K.R., Law, R.M., Denning, A.S., Rayner, P.J., Baker, D., Bousquet, P., Bruhwiler, L., Chen, Y.H., Ciais, P., Fan, S., et al. (2002). Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature 415, 626–630.

    Article  PubMed  Google Scholar 

  • Han, P., Zeng, N., Zhang, W., Cai, Q., Yang, R., Yao, B., Lin, X., Wang, G., Liu, D., and Yu, Y. (2021). Decreasing emissions and increasing sink capacity to support China in achieving carbon neutrality before 2060. arXiv: 2102.10871.

  • Harper, A.B., Powell, T., Cox, P.M., House, J., Huntingford, C., Lenton, T. M., Sitch, S., Burke, E., Chadburn, S.E., Collins, W.J., et al. (2018). Land-use emissions play a critical role in land-based mitigation for Paris climate targets. Nat Commun 9, 2938.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harris, N.L., Gibbs, D.A., Baccini, A., Birdsey, R.A., de Bruin, S., Farina, M., Fatoyinbo, L., Hansen, M.C., Herold, M., Houghton, R.A., et al. (2021). Global maps of twenty-first century forest carbon fluxes. Nat Clim Chang 11, 234–240.

    Article  Google Scholar 

  • Hastings, S.J., Oechel, W.C., and Muhlia-Melo, A. (2005). Diurnal, seasonal and annual variation in the net ecosystem CO2 exchange of a desert shrub community (Sarcocaulescent) in Baja California, Mexico. Glob Change Biol 11, 927–939.

    Article  Google Scholar 

  • Haverd, V., Raupach, M.R., Briggs, P.R., Canadell, J.G., Davis, S.J., Law, R.M., Meyer, C.P., Peters, G.P., Pickett-Heaps, C., and Sherman, B. (2013). The Australian terrestrial carbon budget. Biogeosciences 10, 851–869.

    Article  CAS  Google Scholar 

  • He, H., Wang, S., Zhang, L., Wang, J., Ren, X., Zhou, L., Piao, S., Yan, H., Ju, W., Gu, F., et al. (2019). Altered trends in carbon uptake in China’s terrestrial ecosystems under the enhanced summer monsoon and warming hiatus. Natl Sci Rev 6, 505–514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He, W., He, P., Jiang, R., Yang, J., Drury, C.F., Smith, W.N., Grant, B.B., and Zhou, W. (2021). Soil organic carbon changes for croplands across China from 1991 to 2012. Agronomy 11, 1433.

    Article  CAS  Google Scholar 

  • Hengl, T., de Jesus, J.M., MacMillan, R.A., Batjes, N.H., Heuvelink, G.B. M., Ribeiro, E., Samuel-Rosa, A., Kempen, B., Leenaars, J.G.B., Walsh, M.G., et al. (2014). SoilGrids1km—Global soil information based on automated mapping. PLoS ONE 9, e105992.

    Article  PubMed  PubMed Central  Google Scholar 

  • Holland, E.A., Brown, S., Potter, C.S., Fan, S.A.K., Gloor, M., Mahlman, J., Pacala, S., Sarmiento, J., Takahashi, T., and Tans, P. (1999). North American carbon sink. Science 283, 1815.

    Article  Google Scholar 

  • Houghton, R.A., Hobbie, J.E., Melillo, J.M., Moore, B., Peterson, B.J., Shaver, G.R., and Woodwell, G.M. (1983). Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: a net release of CO2 to the atmosphere. Ecol Monogr 53, 235–262.

    Article  CAS  Google Scholar 

  • Houghton, R.A., Hackler, J.L., and Lawrence, K.T. (2000). Changes in terrestrial carbon storage in the United States. 2: the role of fire and fire management. Glob Ecol Biogeogr 9, 145–170.

    Article  Google Scholar 

  • Hu, H.F., Wang, Z.H., Liu, G.H., and Fu, B.J. (2006). Vegetation carbon storage of major shrublands in China (in Chinese). Chin J Plant Ecol 30, 539–544.

    Article  CAS  Google Scholar 

  • Huang, M., Ji, J.J., Cao, M.K., and Li, K.R. (2006). Modeling study of vegetation shoot and root biomass in China (in Chinese). Acta Ecol Sin 26, 4156–4163.

    Google Scholar 

  • Huang, Y., and Sun, W. (2006). Changes in topsoil organic carbon of croplands in mainland China over the last two decades. Chin Sci Bull 51, 1785–1803.

    Article  CAS  Google Scholar 

  • Huang, Y., Sun, W., Zhang, W., Yu, Y., Su, Y., and Song, C. (2010). Marshland conversion to cropland in northeast China from 1950 to 2000 reduced the greenhouse effect. Glob Change Biol 16, 680–695.

    Article  Google Scholar 

  • Huang, Y., Yu, Y., Zhang, W., Sun, W., Liu, S., Jiang, J., Wu, J., Yu, W., Wang, Y., and Yang, Z. (2009). Agro-C: a biogeophysical model for simulating the carbon budget of agroecosystems. Agric For Meteor 149, 106–129.

    Article  Google Scholar 

  • Hubau, W., Lewis, S.L., Phillips, O.L., Affum-Baffoe, K., Beeckman, H., Cuní-Sanchez, A., Daniels, A.K., Ewango, C.E.N., Fauset, S., Mukinzi, J.M., et al. (2020). Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87.

    Article  CAS  PubMed  Google Scholar 

  • Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J.W., Schuur, E.A.G., Ping, C.L., Schirrmeister, L., Grosse, G., Michaelson, G.J., Koven, C.D., et al. (2014). Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11, 6573–6593.

    Article  Google Scholar 

  • Hunt, J.R., Celestina, C., and Kirkegaard, J.A. (2020). The realities of climate change, conservation agriculture and soil carbon sequestration. Glob Change Biol 26, 3188–3189.

    Article  Google Scholar 

  • Huntzinger, D.N., Michalak, A.M., Schwalm, C., Ciais, P., King, A.W., Fang, Y., Schaefer, K., Wei, Y., Cook, R.B., Fisher, J.B., et al. (2017). Uncertainty in the response of terrestrial carbon sink to environmental drivers undermines carbon-climate feedback predictions. Sci Rep 7, 4765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hutyra, L.R., Yoon, B., and Alberti, M. (2011). Terrestrial carbon stocks across a gradient of urbanization: a study of the Seattle, WA region. Glob Change Biol 17, 783–797.

    Article  Google Scholar 

  • Ichii, K., Ueyama, M., Kondo, M., Saigusa, N., Kim, J., Alberto, M.C., Ardö, J., Euskirchen, E.S., Kang, M., Hirano, T., et al. (2017). New data-driven estimation of terrestrial CO2 fluxes in Asia using a standardized database of eddy covariance measurements, remote sensing data, and support vector regression. J Geophys Res Biogeosci 122, 767–795.

    Article  CAS  Google Scholar 

  • IPCC. (1990). FAR Climate Change: Scientific Assessment of Climate Change. Cambridge: Cambridge University Press. 283–310.

    Google Scholar 

  • IPCC. (2018). Annex I: Glossary. In: Matthews, J.B.R. ed. Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. Geneva: World Meteorological Organization. 541–562.

    Google Scholar 

  • Jackson, R.B., Lajtha, K., Crow, S.E., Hugelius, G., Kramer, M.G., and Piñeiro, G. (2017). The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls. Annu Rev Ecol Evol Syst 48, 419–445.

    Article  Google Scholar 

  • Janssens, I.A., Freibauer, A., Ciais, P., Smith, P., Nabuurs, G.J., Folberth, G., Schlamadinger, B., Hutjes, R.W.A., Ceulemans, R., Schulze, E.D., et al. (2003). Europe’s terrestrial biosphere absorbs 7 to 12% of European anthropogenic CO2 emissions. Science 300, 1538–1542.

    Article  CAS  PubMed  Google Scholar 

  • Jasoni, R.L., Smith, S.D., and Arnone, J.A. (2005). Net ecosystem CO2 exchange in Mojave Desert shrublands during the eighth year of exposure to elevated CO2. Glob Change Biol 11, 749–756.

    Article  Google Scholar 

  • Ji, J.J., Huang, M., and Li, K.R. (2008). Prediction of carbon exchanges between China terrestrial ecosystem and atmosphere in 21st century. Sci China Ser D 51, 885–898.

    Article  CAS  Google Scholar 

  • Jia, X., Zha, T.S., Wu, B., Zhang, Y.Q., Gong, J.N., Qin, S.G., Chen, G.P., Qian, D., Kellomäki, S., and Peltola, H. (2014). Biophysical controls on net ecosystem CO2 exchange over a semiarid shrubland in northwest China. Biogeosciences 11, 4679–4693.

    Article  Google Scholar 

  • Jiang, F., Chen, J.M., Zhou, L., Ju, W., Zhang, H., Machida, T., Ciais, P., Peters, W., Wang, H., Chen, B., et al. (2016). A comprehensive estimate of recent carbon sinks in China using both top-down and bottom-up approaches. Sci Rep 6, 22130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang, F., Wang, H.W., Chen, J.M., Zhou, L.X., Ju, W.M., Ding, A.J., Liu, L.X., and Peters, W. (2013). Nested atmospheric inversion for the terrestrial carbon sources and sinks in China. Biogeosciences 10, 5311–5324.

    Article  CAS  Google Scholar 

  • Jo, H.K., and McPherson, G.E. (1995). Carbon storage and flux in urban residential greenspace. J Environ Manage 45, 109–133.

    Article  Google Scholar 

  • Jobbágy, E.G., and Jackson, R.B. (2000). The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10, 423–436.

    Article  Google Scholar 

  • Jung, M., Reichstein, M., Margolis, H.A., Cescatti, A., Richardson, A.D., Arain, M.A., Arneth, A., Bernhofer, C., Bonal, D., Chen, J., et al. (2011). Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J Geophys Res 116, G00J07.

    Google Scholar 

  • Jung, M., Schwalm, C., Migliavacca, M., Walther, S., Camps-Valls, G., Koirala, S., Anthoni, P., Besnard, S., Bodesheim, P., Carvalhais, N., et al. (2020). Scaling carbon fluxes from eddy covariance sites to globe: synthesis and evaluation of the FLUXCOM approach. Biogeosciences 17, 1343–1365.

    Article  CAS  Google Scholar 

  • Karstens, K., Bodirsky, B.L., Dietrich, J.P., Dondini, M., Heinke, J., Kuhnert, M., Müller, C., Rolinski, S., Smith, P., Weindl, I., et al. (2020). Management induced changes of soil organic carbon on global croplands. Biogeosci Discuss doi: https://doi.org/10.5194/bg-2020-468.

  • Kauppi, P.E., Mielikäinen, K., and Kuusela, K. (1992). Biomass and carbon budget of European forests, 1971 to 1990. Science 256, 70–74.

    Article  CAS  PubMed  Google Scholar 

  • Keeling, C.D., Chin, J.F.S., and Whorf, T.P. (1996a). Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature 382, 146–149.

    Article  CAS  Google Scholar 

  • Keeling, R.F., Piper, S.C., and Heimann, M. (1996b). Global and hemispheric CO2 sinks deduced from changes in atmospheric O2 concentration. Nature 381, 218–221.

    Article  CAS  Google Scholar 

  • Keenan, T.F., Prentice, I.C., Canadell, J.G., Williams, C.A., Wang, H., Raupach, M., and Collatz, G.J. (2016). Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake. Nat Commun 7, 13428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keenan, T.F., and Williams, C.A. (2018). The terrestrial carbon sink. Annu Rev Environ Resour 43, 219–243.

    Article  Google Scholar 

  • Kenea, S.T., Labzovskii, L.D., Goo, T.Y., Li, S., Oh, Y.S., and Byun, Y.H. (2020). Comparison of regional simulation of biospheric CO2 flux from the updated version of CarbonTracker Asia with FLUXCOM and other inversions over Asia. Remote Sens 12, 145.

    Article  Google Scholar 

  • King, A.W., Andres, R.J., Davis, K.J., Hafer, M., Hayes, D.J., Huntzinger, D.N., de Jong, B., Kurz, W.A., McGuire, A.D., Vargas, R., et al. (2015). North America’s net terrestrial CO2 exchange with the atmosphere 1990–2009. Biogeosciences 12, 399–414.

    Article  Google Scholar 

  • King, A.W., Post, W.M., and Wullschleger, S.D. (1997). The potential response of terrestrial carbon storage to changes in climate and atmospheric CO2. Climatic Change 35, 199–227.

    Article  CAS  Google Scholar 

  • Kou, D., Ma, W., Ding J., Zhang, B., Fang, K., Hu, H., Yu, J., Wang, T., Qin, S., Zhao, X., et al. (2018). Dryland soils in northern China sequester carbon during the early 2000s warming hiatus period. Funct Ecol 32, 1620–1630.

    Article  Google Scholar 

  • Kramer, P.J. (1981). Carbon dioxide concentration, photosynthesis, and dry matter production. BioScience 31, 29–33.

    Article  CAS  Google Scholar 

  • Lal, R. (2004a). Soil carbon sequestration impacts on global climate change and food security. Science 304, 1623–1627.

    Article  CAS  PubMed  Google Scholar 

  • Lal, R. (2004b). Soil carbon sequestration to mitigate climate change. Geoderma 123, 1–22.

    Article  CAS  Google Scholar 

  • Lal, R. (2007). Carbon management in agricultural soils. Mitig Adapt Strat Glob Change 12, 303–322.

    Article  Google Scholar 

  • Lal, R. (2008). Carbon sequestration. Phil Trans R Soc B 363, 815–830.

    Article  CAS  PubMed  Google Scholar 

  • Lal, R. (2020). Managing soils for negative feedback to climate change and positive impact on food and nutritional security. Soil Sci Plant Nutr 66, 1–9.

    Article  CAS  Google Scholar 

  • Lenton, T.M. (2010). The potential for land-based biological CO2 removal to lower future atmospheric CO2 concentration. Carbon Manage 1, 145–160.

    Article  CAS  Google Scholar 

  • Lewis, S.L., Lopez-Gonzalez, G., Sonké, B., Affum-Baffoe, K., Baker, T. R., Ojo, L.O., Phillips, O.L., Reitsma, J.M., White, L., Comiskey, J.A., et al. (2009). Increasing carbon storage in intact African tropical forests. Nature 457, 1003–1006.

    Article  CAS  PubMed  Google Scholar 

  • Li, C., Zhuang, Y., Frolking, S., Galloway, J., Harriss, R., Moore III, B., Schimel, D., and Wang, X. (2003). Modeling soil organic carbon change in croplands of China. Ecol Appl 13, 327–336.

    Article  Google Scholar 

  • Li, K.R., Wang, S.Q., and Cao, M.K. (2004). Vegetation and soil carbon storage in China. Sci China Ser D 47, 49–57.

    Article  CAS  Google Scholar 

  • Li, P., Zhu, J., Hu, H., Guo, Z., Pan, Y., Birdsey, R., and Fang, J. (2016). The relative contributions of forest growth and areal expansion to forest biomass carbon. Biogeosciences 13, 375–388.

    Article  Google Scholar 

  • Li, Y., Wang, Y.G., Houghton, R.A., and Tang, L.S. (2015b). Hidden carbon sink beneath desert. Geophys Res Lett 42, 5880–5887.

    Article  CAS  Google Scholar 

  • Li, Y., Zhang, C., Wang, N., Han, Q., Zhang, X., Liu, Y., Xu, L., and Ye, W. (2017). Substantial inorganic carbon sink in closed drainage basins globally. Nat Geosci 10, 501–506.

    Article  CAS  Google Scholar 

  • Li, Z., Chen, Y., Li, W., Deng, H., and Fang, G. (2015a). Potential impacts of climate change on vegetation dynamics in Central Asia. J Geophys Res Atmos 120, 12345–12356.

    Article  Google Scholar 

  • Li, Z., Chen, Y., Zhang, Q., and Li, Y. (2020). Spatial patterns of vegetation carbon sinks and sources under water constraint in Central Asia. J Hydrol 590, 125355.

    Article  CAS  Google Scholar 

  • Liang, W., Zhang, W., Jin, Z., Yan, J., Lü, Y., Wang, S., Fu, B., Li, S., Ji, Q., Gou, F., et al. (2020). Estimation of global grassland net ecosystem carbon exchange using a model tree ensemble approach. J Geophys Res Biogeosci 125, e2019JG005034.

    Article  CAS  Google Scholar 

  • Lieth, H. (1978). Patterns of Primary Productivity in the Biosphere. Stroudsberg: Dowden, Hutchinson & Ross.

    Google Scholar 

  • Lindert, P.H. (1999). The bad Earth? China’s soils and agricultural development since the 1930s. Econ Dev Cult Change 47, 701–736.

    Article  CAS  PubMed  Google Scholar 

  • Liu, R., Li, Y., and Wang, Q.X. (2012). Variations in water and CO2 fluxes over a saline desert in western China. Hydrol Process 26, 513–522.

    Article  CAS  Google Scholar 

  • Liu, S., Yang, Y., Shen, H., Hu, H., Zhao, X., Li, H., Liu, T., and Fang, J. (2018). No significant changes in topsoil carbon in the grasslands of northern China between the 1980s and 2000s. Sci Total Environ 624, 1478–1487.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., Zhou, Y., Ju, W., Wang, S., Wu, X., He, M., and Zhu, G. (2014). Impacts of droughts on carbon sequestration by China’s terrestrial ecosystems from 2000 to 2011. Biogeosciences 11, 2583–2599.

    Article  CAS  Google Scholar 

  • Liu, Y.Y., van Dijk, A.I.J.M., de Jeu, R.A.M., Canadell, J.G., McCabe, M. F., Evans, J.P., and Wang, G. (2015). Recent reversal in loss of global terrestrial biomass. Nat Clim Change 5, 470–474.

    Article  Google Scholar 

  • Liu, Z.G., and Zhang, K.M. (2005). Wetland soils carbon stock in the Sanjiang plain (in Chinese). J Tsinghua Univ (Sci Technol) 45, 788–791.

    CAS  Google Scholar 

  • Lu, F., Hu, H., Sun, W., Zhu, J., Liu, G., Zhou, W., Zhang, Q., Shi, P., Liu, X., Wu, X., et al. (2018). Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010. Proc Natl Acad Sci USA 115, 4039–4044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, M., Zou, Y., Xun, Q., Yu, Z., Jiang, M., Sheng, L., Lu, X., and Wang, D. (2021). Anthropogenic disturbances caused declines in the wetland area and carbon pool in China during the last four decades. Glob Change Biol 27, 3837–3845.

    Article  Google Scholar 

  • Lu, W., Xiao, J., Liu, F., Zhang, Y., Liu, C., and Lin, G. (2017). Contrasting ecosystem CO2 fluxes of inland and coastal wetlands: a meta-analysis of eddy covariance data. Glob Change Biol 23, 1180–1198.

    Article  Google Scholar 

  • Luo, H., Oechel, W.C., Hastings, S.J., Zulueta, R., Qian, Y., and Kwon, H. (2007). Mature semiarid chaparral ecosystems can be a significant sink for atmospheric carbon dioxide. Glob Change Biol 13, 386–396.

    Article  Google Scholar 

  • Luo, Y., and Weng, E. (2011). Dynamic disequilibrium of the terrestrial carbon cycle under global change. Trends Ecol Evol 26, 96–104.

    Article  PubMed  Google Scholar 

  • Luyssaert, S., Abril, G., Andres, R., Bastviken, D., Bellassen, V., Bergamaschi, P., Bousquet, P., Chevallier, F., Ciais, P., Corazza, M., et al. (2012). The European land and inland water CO2, CO, CH4 and N2O balance between 2001 and 2005. Biogeosciences 9, 3357–3380.

    Article  CAS  Google Scholar 

  • Luyssaert, S., Inglima, I., Jung, M., Richardson, A.D., Reichstein, M., Papale, D., Piao, S.L., Schulze, E.D., Wingate, L., Matteucci, G., et al. (2007). CO2 balance of boreal, temperate, and tropical forests derived from a global database. Glob Change Biol 13, 2509–2537.

    Article  Google Scholar 

  • Ma, J., Liu, R., Tang, L.S., Lan, Z.D., and Li, Y. (2014). A downward CO2 flux seems to have nowhere to go. Biogeosciences 11, 6251–6262.

    Article  Google Scholar 

  • Ma, W.H., Fang, J.Y., Yang, Y.H., and Mohammat, A. (2010). Biomass carbon stocks and their changes in northern China’s grasslands during 1982–2006. Sci China Life Sci 53, 841–850.

    Article  PubMed  Google Scholar 

  • Martin, P.H., Valentini, R., Jacques, M., Fabbri, K., Galati, D., Quaratino, R., Moncrieff, J.B., Jarvis, P., Jensen, N.O., Lindroth, A., et al. (1998). New estimate of the carbon sink strength of EU forests integrating flux measurements, field surveys, and space observations: 0.17–0.35 Gt(C). Ambio 27, 582–584.

    Google Scholar 

  • McPherson, E.G., Xiao, Q., and Aguaron, E. (2013). A new approach to quantify and map carbon stored, sequestered and emissions avoided by urban forests. Landscape Urban Planning 120, 70–84.

    Article  Google Scholar 

  • Mercado, L.M., Bellouin, N., Sitch, S., Boucher, O., Huntingford, C., Wild, M., and Cox, P.M. (2009). Impact of changes in diffuse radiation on the global land carbon sink. Nature 458, 1014–1017.

    Article  CAS  PubMed  Google Scholar 

  • Mielnick, P., Dugas, W.A., Mitchell, K., and Havstad, K. (2005). Long-term measurements of CO2 flux and evapotranspiration in a Chihuahuan desert grassland. J Arid Environ 60, 423–436.

    Article  Google Scholar 

  • Mishra, U., Hugelius, G., Shelef, E., Yang, Y., Strauss, J., Lupachev, A., Harden, J.W., Jastrow, J.D., Ping, C.L., Riley, W.J., et al. (2021). Spatial heterogeneity and environmental predictors of permafrost region soil organic carbon stocks. Sci Adv 7, eaaz5236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitsch, W.J., Bernal, B., Nahlik, A.M., Mander, Ü., Zhang, L., Anderson, C.J., Jørgensen, S.E., and Brix, H. (2013). Wetlands, carbon, and climate change. Landscape Ecol 28, 583–597.

    Article  Google Scholar 

  • Morales, P., Sykes, M.T., Prentice, I.C., Smith, P., Smith, B., Bugmann, H., Zierl, B., Friedlingstein, P., Viovy, N., Sabaté, S., et al. (2005). Comparing and evaluating process-based ecosystem model predictions of carbon and water fluxes in major European forest biomes. Glob Change Biol 11, 2211–2233.

    Article  Google Scholar 

  • Mu, Q., Zhao, M., Running, S.W., Liu, M., and Tian, H. (2008). Contribution of increasing CO2 and climate change to the carbon cycle in China’s ecosystems. J Geophys Res 113, G01018.

    Google Scholar 

  • Murray-Tortarolo, G., Friedlingstein, P., Sitch, S., Jaramillo, V.J., Murguía-Flores, F., Anav, A., Liu, Y., Arneth, A., Arvanitis, A., Harper, A., et al. (2016). The carbon cycle in Mexico: past, present and future of C stocks and fluxes. Biogeosciences 13, 223–238.

    Article  Google Scholar 

  • Myneni, R.B., Dong, J., Tucker, C.J., Kaufmann, R.K., Kauppi, P.E., Liski, J., Zhou, L., Alexeyev, V., and Hughes, M.K. (2001). A large carbon sink in the woody biomass of Northern forests. Proc Natl Acad Sci USA 98, 14784–14789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nahlik, A.M., and Fennessy, M.S. (2016). Carbon storage in US wetlands. Nat Commun 7, 13835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nemani, R., White, M., Thornton, P., Nishida, K., Reddy, S., Jenkins, J., and Running, S. (2002). Recent trends in hydrologic balance have enhanced the terrestrial carbon sink in the United States. Geophys Res Lett 29, 106–1-106-4.

    Article  CAS  Google Scholar 

  • Ni, J. (2001). Carbon storage in terrestrial ecosystems of China: estimates at different spatial resolutions and their responses to climate change. Climatic Change 49, 339–358.

    Article  CAS  Google Scholar 

  • Ni, J. (2002). Carbon storage in grasslands of China. J Arid Environ 50, 205–218.

    Article  Google Scholar 

  • Niu, Z.G., Gong, P., Cheng, X., Guo, J.H., Wang, L., Huang, H.B., Shen, S. Q., Wu, Y.Z., Wang, X.F., Wang, X.W., et al. (2009). Geographical characteristics of China’s wetlands derived from remotely sensed data. Sci China Ser D 52, 723–738.

    Article  Google Scholar 

  • Nolan, C.J., Field, C.B., and Mach, K.J. (2021). Constraints and enablers for increasing carbon storage in the terrestrial biosphere. Nat Rev Earth Environ 2, 436–446.

    Article  Google Scholar 

  • Nowak, D.J. (1993). Atmospheric carbon reduction by urban trees. J Environ Manage 37, 207–217.

    Article  Google Scholar 

  • Oldfield, E.E., Bradford, M.A., and Wood, S.A. (2019). Global meta-analysis of the relationship between soil organic matter and crop yields. Soil 5, 15–32.

    Article  CAS  Google Scholar 

  • Olson, J.S., Pfuderer, H.A., and Chan, Y.H. (1978). Changes in the global carbon cycle and the biosphere, ORNL-109. Oak Ridge: Oak Ridge National Laboratory.

    Google Scholar 

  • Olson, J.S., Watts, J.A., and Allison, L.J. (1983). Carbon in live vegetation of major world ecosystems, ORNL-5862. Oak Ridge: Oak Ridge National Laboratory.

    Google Scholar 

  • Pacala, S.W., Hurtt, G.C., Baker, D., Peylin, P., Houghton, R.A., Birdsey, R.A., Heath, L., Sundquist, E.T., Stallard, R.F., Ciais, P., et al. (2001). Consistent land- and atmosphere-based U.S. carbon sink estimates. Science 292, 2316–2320.

    Article  CAS  PubMed  Google Scholar 

  • Pan, G., Xu, X., Smith, P., Pan, W., and Lal, R. (2010). An increase in topsoil SOC stock of China’s croplands between 1985 and 2006 revealed by soil monitoring. Agr Ecosyst Environ 136, 133–138.

    Article  Google Scholar 

  • Pan, Y., Birdsey, R.A., Fang, J., Houghton, R., Kauppi, P.E., Kurz, W.A., Phillips, O.L., Shvidenko, A., Lewis, S.L., Canadell, J.G., et al. (2011). A large and persistent carbon sink in the world’s forests. Science 333, 988–993.

    Article  CAS  PubMed  Google Scholar 

  • Pan, Y., Luo, T., Birdsey, R., Hom, J., and Melillo, J. (2004). New estimates of carbon storage and sequestration in China’s forests: effects of age-class and method on inventory-based carbon estimation. Clim Change 67, 211–236.

    Article  CAS  Google Scholar 

  • Papale, D., and Valentini, R. (2003). A new assessment of European forests carbon exchanges by eddy fluxes and artificial neural network spatialization. Glob Change Biol 9, 525–535.

    Article  Google Scholar 

  • Patra, P.K., Canadell, J.G., Houghton, R.A., Piao, S.L., Oh, N.H., Ciais, P., Manjunath, K.R., Chhabra, A., Wang, T., Bhattacharya, T., et al. (2013). The carbon budget of South Asia. Biogeosciences 10, 513–527.

    Article  Google Scholar 

  • Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G.P., and Smith, P. (2016). Climate-smart soils. Nature 532, 49–57.

    Article  CAS  PubMed  Google Scholar 

  • Peng, C., and Apps, M.J. (1997). Contribution of China to the global carbon cycle since the last glacial maximum. Tellus B 49, 393–408.

    Article  Google Scholar 

  • Peters, W., Krol, M.C., van der WERF, G.R., Houweling, S., Jones, C.D., Hughes, J., Schaefer, K., Masarie, K.A., Jacobson, A.R., Miller, J.B., et al. (2010). Seven years of recent European net terrestrial carbon dioxide exchange constrained by atmospheric observations. Glob Change Biol 16, 1317–1337.

    Article  Google Scholar 

  • Petrie, M.D., Collins, S.L., Swann, A.M., Ford, P.L., and Litvak, M.E. (2015). Grassland to shrubland state transitions enhance carbon sequestration in the northern Chihuahuan Desert. Glob Change Biol 21, 1226–1235.

    Article  CAS  Google Scholar 

  • Piao, S.L., Fang, J.Y., He, J.S., and Xiao, Y. (2004). Spatial distribution of grassland biomass in China (in Chinese). Chin J Plant Ecol 28, 491–498.

    Article  Google Scholar 

  • Piao, S., Fang, J., Zhou, L., Tan, K., and Tao, S. (2007). Changes in biomass carbon stocks in China’s grasslands between 1982 and 1999. Glob Biogeochem Cycle 21, GB2002.

    Article  Google Scholar 

  • Piao, S., Fang, J., Ciais, P., Peylin, P., Huang, Y., Sitch, S., and Wang, T. (2009). The carbon balance of terrestrial ecosystems in China. Nature 458, 1009–1013.

    Article  CAS  PubMed  Google Scholar 

  • Piao, S.L., Ito, A., Li, S.G., Huang, Y., Ciais, P., Wang, X.H., Peng, S.S., Nan, H.J., Zhao, C., Ahlström, A., et al. (2012). The carbon budget of terrestrial ecosystems in East Asia over the last two decades. Biogeosciences 9, 3571–3586.

    Article  CAS  Google Scholar 

  • Piao, S., Sitch, S., Ciais, P., Friedlingstein, P., Peylin, P., Wang, X., Ahlström, A., Anav, A., Canadell, J.G., Cong, N., et al. (2013). Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends. Glob Change Biol 19, 2117–2132.

    Article  Google Scholar 

  • Piao, S., Huang, M., Liu, Z., Wang, X., Ciais, P., Canadell, J.G., Wang, K., Bastos, A., Friedlingstein, P., Houghton, R.A., et al. (2018). Lower land-use emissions responsible for increased net land carbon sink during the slow warming period. Nat Geosci 11, 739–743.

    Article  CAS  Google Scholar 

  • Post, W.M., Emanuel, W.R., Zinke, P.J., and Stangenberger, A.G. (1982). Soil carbon pools and world life zones. Nature 298, 156–159.

    Article  CAS  Google Scholar 

  • Poulter, B., Frank, D., Ciais, P., Myneni, R.B., Andela, N., Bi, J., Broquet, G., Canadell, J.G., Chevallier, F., Liu, Y.Y., et al. (2014). Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509, 600–603.

    Article  CAS  PubMed  Google Scholar 

  • Powlson, D.S., Stirling, C.M., Jat, M.L., Gerard, B.G., Palm, C.A., Sanchez, P.A., and Cassman, K.G. (2014). Limited potential of no-till agriculture for climate change mitigation. Nat Clim Change 4, 678–683.

    Article  Google Scholar 

  • Prentice, I.C., Farquhar, G.D., Fasham, M.J.R., Goulden, M.L., Heimann, M., Jaramillo, V.J., Kheshgi, H.S., Le Quere, C., Scholes, R. J., Wallace, D.W.R., et al. (2001). The carbon cycle and atmospheric CO2. In: Climate Change 2000: The Science of Climate Change. Contributions of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press. 183–237.

    Google Scholar 

  • Prentice, I.C., Harrison, S.P., and Bartlein, P.J. (2011). Global vegetation and terrestrial carbon cycle changes after the last ice age. New Phytol 189, 988–998.

    Article  CAS  PubMed  Google Scholar 

  • Prentice, I.C., Sykes, M.T., Lautenschlager, M., Harrison, S.P., Denissenko, O., and Bartlein, P.J. (1993). Modelling global vegetation patterns and terrestrial carbon storage at the Last Glacial Maximum. Glob Ecol Biogeogr Lett 3, 67–76.

    Article  Google Scholar 

  • Prentice, K.C., and Fung, I.Y. (1990). The sensitivity of terrestrial carbon storage to climate change. Nature 346, 48–51.

    Article  Google Scholar 

  • Pugh, T.A.M., Lindeskog, M., Smith, B., Poulter, B., Arneth, A., Haverd, V., and Calle, L. (2019). Role of forest regrowth in global carbon sink dynamics. Proc Natl Acad Sci USA 116, 4382–4387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin, Y., Xiao, X., Wigneron, J.P., Ciais, P., Brandt, M., Fan, L., Li, X., Crowell, S., Wu, X., Doughty, R., et al. (2021a). Carbon loss from forest degradation exceeds that from deforestation in the Brazilian Amazon. Nat Clim Chang 11, 442–448.

    Article  Google Scholar 

  • Qin, Z., Huang, Y., and Zhuang, Q. (2013). Soil organic carbon sequestration potential of cropland in China. Glob Biogeochem Cycle 27, 711–722.

    Article  CAS  Google Scholar 

  • Qin, Z., Deng, X., Griscom, B., Huang, Y., Li, T., Smith, P., Yuan, W., and Zhang, W. (2021b). Natural climate solutions for China: the last mile to carbon neutrality. Adv Atmos Sci 38, 889–895.

    Article  Google Scholar 

  • Qin, Z., Griscom, B., Huang, Y., Yuan, W., Chen, X., Dong, W., Li, T., Sanderman, J., Smith, P., Wang, F., et al. (2021c). Delayed impact of natural climate solutions. Glob Change Biol 27, 215–217.

    Article  Google Scholar 

  • Qiu, Z., Feng, Z., Song, Y., Li, M., and Zhang, P. (2020a). Carbon sequestration potential of forest vegetation in China from 2003 to 2050: predicting forest vegetation growth based on climate and the environment. J Clean Prod 252, 119715.

    Article  Google Scholar 

  • Qiu, C.J., Zhu, D., Ciais, P., Guenet, B., and Peng, S.S. (2020b). The role of northern peatlands in the global carbon cycle for the 21st century. Glob Ecol Biogeogr 29, 956–973.

    Article  Google Scholar 

  • Raciti, S.M., Hutyra, L.R., and Newell, J.D. (2014). Mapping carbon storage in urban trees with multi-source remote sensing data: relationships between biomass, land use, and demographics in Boston neighborhoods. Sci Total Environ 500–501, 72–83.

    Article  PubMed  CAS  Google Scholar 

  • Regnier, P., Friedlingstein, P., Ciais, P., Mackenzie, F.T., Gruber, N., Janssens, I.A., Laruelle, G.G., Lauerwald, R., Luyssaert, S., Andersson, A.J., et al. (2013). Anthropogenic perturbation of the carbon fluxes from land to ocean. Nat Geosci 6, 597–607.

    Article  CAS  Google Scholar 

  • Reiners, W.A. (1973). Terrestrial detritus and the carbon cycle. In: Woodwell, G.M., and Pecan, E.V., eds. Carbon and the Biosphere, Proceeding of the 24th Brookhaven Symposium in Biology. Springfield: Technical Information Center, Office of Information Services, US Atomic Energy Commission. 368–382.

    Google Scholar 

  • Ren, W., Banger, K., Tao, B., Yang, J., Huang, Y., and Tian, H. (2020). Global pattern and change of cropland soil organic carbon during 1901–2010: roles of climate, atmospheric chemistry, land use and management. Geogr Sustain 1 59–69.

    Google Scholar 

  • Roelfsema, M., van Soest, H.L., Harmsen, M., van Vuuren, D.P., Bertram, C., den Elzen, M., Höhne, N., Iacobuta, G., Krey, V., Kriegler, E., et al. (2020). Taking stock of national climate policies to evaluate implementation of the Paris Agreement. Nat Commun 11, 2096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogelj, J., Schaeffer, M., Meinshausen, M., Knutti, R., Alcamo, J., Riahi, K., and Hare, W. (2015). Zero emission targets as long-term global goals for climate protection. Environ Res Lett 10, 105007.

    Article  CAS  Google Scholar 

  • Rosenzweig, C., Solecki, W., Hammer, S.A., and Mehrotra, S. (2010). Cities lead the way in climate-change action. Nature 467, 909–911.

    Article  CAS  PubMed  Google Scholar 

  • Saatchi, S., Asefi-Najafabady, S., Malhi, Y., Aragão, L.E.O.C., Anderson, L.O., Myneni, R.B., and Nemani, R. (2013). Persistent effects of a severe drought on Amazonian forest canopy. Proc Natl Acad Sci USA 110, 565–570.

    Article  CAS  PubMed  Google Scholar 

  • Sang, Y., Huang, L., Wang, X., Keenan, T.F., Wang, C., and He, Y. (2021). Comment on “Recent global decline of CO2 fertilization effects on vegetation photosynthesis”. Science 373, abg4420.

    Article  CAS  Google Scholar 

  • Saunois, M., Stavert, A.R., Poulter, B., Bousquet, P., Canadell, J.G., Jackson, R.B., Raymond, P.A., Dlugokencky, E.J., Houweling, S., Patra, P.K., et al. (2020). The global methane budget 2000–2017. Earth Syst Sci Data 12, 1561–1623.

    Article  Google Scholar 

  • SCEP. (1970). Man’s Impact on the Global Environment: Assessment and Recommendations for Action. Cambridge: Massachusetts Institute of Technology Press.

    Google Scholar 

  • Schimel, D., Melillo, J., Tian, H., McGuire, A.D., Kicklighter, D., Kittel, T., Rosenbloom, N., Running, S., Thornton, P., Ojima, D., et al. (2000). Contribution of increasing CO2 and climate to carbon storage by ecosystems in the United States. Science 287, 2004–2006.

    Article  CAS  PubMed  Google Scholar 

  • Schimel, D., Stephens, B.B., and Fisher, J.B. (2015). Effect of increasing CO2 on the terrestrial carbon cycle. Proc Natl Acad Sci USA 112, 436–441.

    Article  CAS  PubMed  Google Scholar 

  • Schlesinger, W.H. (1984). Soil organic matter: a source of atmospheric CO2? In: Woodwell, G.M., ed. The Role of Terrestrial Vegetation in the Global Carbon Cycle: Measurement by Remote Sensing. New York: Wiley. 111–127.

    Google Scholar 

  • Schlesinger, W.H. (1997). Biogeochemistry: An Analysis of Global Change. San Diego: Academic Press.

    Google Scholar 

  • Schlesinger, W.H. (2017). An evaluation of abiotic carbon sinks in deserts. Glob Change Biol 23, 25–27.

    Article  Google Scholar 

  • Schneider, A., Friedl, M.A., and Potere, D. (2009). A new map of global urban extent from MODIS satellite data. Environ Res Lett 4, 044003.

    Article  Google Scholar 

  • Schulze, E.D., Ciais, P., Luyssaert, S., Schrumpf, M., Janssens, I.A., Thiruchittampalam, B., Theloke, J., Saurat, M., Bringezu, S., Lelieveld, J., et al. (2010). The European carbon balance. Part 4: integration of carbon and other trace-gas fluxes. Glob Change Biol 16, 1451–1469.

    Article  Google Scholar 

  • Schulze, E.D., Wirth, C., and Heimann, M. (2000). Managing forests after Kyoto. Science 289, 2058–2059.

    Article  CAS  PubMed  Google Scholar 

  • Schwalm, C.R., Williams, C.A., Schaefer, K., Anderson, R., Arain, M.A., Baker, I., Barr, A., Black, T.A., Chen, G., Chen, J.M., et al. (2010). A model-data intercomparison of CO2 exchange across North America: results from the North American Carbon Program site synthesis. J Geophys Res 115, G00H05.

    Google Scholar 

  • Scurlock, J.M.O., and Hall, D.O. (1998). The global carbon sink: a grassland perspective. Glob Change Biol 4, 229–233.

    Article  Google Scholar 

  • Sedjo, R.A. (1992). Temperate forest ecosystems in the global carbon cycle. Ambio 21, 274–277.

    Google Scholar 

  • Shao, P., Zeng, X., Sakaguchi, K., Monson, R.K., and Zeng, X. (2013). Terrestrial carbon cycle: climate relations in eight CMIP5 Earth System Models. J Clim 26, 8744–8764.

    Article  Google Scholar 

  • She, W., Wu, Y., Huang, H., Chen, Z., Cui, G., Zheng, H., Guan, C., and Chen, F. (2017). Integrative analysis of carbon structure and carbon sink function for major crop production in China’s typical agriculture regions. J Clean Prod 162, 702–708.

    Article  CAS  Google Scholar 

  • Six, J., Elliott, E.T., and Paustian, K. (2000). Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biol Biochem 32, 2099–2103.

    Article  CAS  Google Scholar 

  • Six, J., Feller, C., Denef, K., Ogle, S.M., de Moraes Sa, J.C., and Albrecht, A. (2002). Soil organic matter, biota and aggregation in temperate and tropical soils—effects of no-tillage. Agronomie 22, 755–775.

    Article  Google Scholar 

  • Smith, P. (2014). Do grasslands act as a perpetual sink for carbon? Glob Change Biol 20, 2708–2711.

    Article  Google Scholar 

  • Smith, P., Adams, J., Beerling, D.J., Beringer, T., Calvin, K.V., Fuss, S., Griscom, B., Hagemann, N., Kammann, C., Kraxner, F., et al. (2019). Land-management options for greenhouse gas removal and their impacts on ecosystem services and the sustainable development goals. Annu Rev Environ Resour 44, 255–286.

    Article  Google Scholar 

  • Song, G., Li, L., Pan, G., and Zhang, Q. (2005). Topsoil organic carbon storage of China and its loss by cultivation. Biogeochemistry 74, 47–62.

    Article  CAS  Google Scholar 

  • Song, J., Wan, S., Piao, S., Knapp, A.K., Classen, A.T., Vicca, S., Ciais, P., Hovenden, M.J., Leuzinger, S., Beier, C., et al. (2019). A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. Nat Ecol Evol 3, 1309–1320.

    Article  PubMed  Google Scholar 

  • Steffen, W., Noble, I., Canadell, J., Apps, M., Schulze, E.D., and Jarvis, P. G. (1998). The terrestrial carbon cycle: implications for the Kyoto Protocol. Science 280, 1393–1394.

    Article  Google Scholar 

  • Stephens, B.B., Gurney, K.R., Tans, P.P., Sweeney, C., Peters, W., Bruhwiler, L., Ciais, P., Ramonet, M., Bousquet, P., Nakazawa, T., et al. (2007). Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO2. Science 316, 1732–1735.

    Article  CAS  PubMed  Google Scholar 

  • Stockmann, U., Adams, M.A., Crawford, J.W., Field, D.J., Henakaarchchi, N., Jenkins, M., Minasny, B., McBratney, A.B., Courcelles, V.R., Singh, K., et al. (2013). The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agr Ecosyst Environ 164, 80–99.

    Article  CAS  Google Scholar 

  • Strauss, J., Schirrmeister, L., Grosse, G., Fortier, D., Hugelius, G., Knoblauch, C., Romanovsky, V., Schädel, C., Schneider von Deimling, T., Schuur, E.A.G., et al. (2017). Deep Yedoma permafrost: a synthesis of depositional characteristics and carbon vulnerability. Earth Sci Rev 172, 75–86.

    Article  CAS  Google Scholar 

  • Sulla-Menashe, D., and Friedl, M.A. (2018). User Guide to Collection 6 MODIS Land Cover (MCD12Q1 and MCD12C1) Product. Reston: USGS.

    Google Scholar 

  • Sun, W.J., Huang, Y., Zhang, W., and Yu, Y.Q. (2008). Key issues on soil carbon sequestration potential in agricultural soils (in Chinese). Adv Earth Sci 23, 996–1004.

    CAS  Google Scholar 

  • Sun, W., Huang, Y., Zhang, W., and Yu, Y. (2010). Carbon sequestration and its potential in agricultural soils of China. Glob Biogeochem Cycle 24, GB3001.

    Article  CAS  Google Scholar 

  • Sun, Y., Xie, S., and Zhao, S. (2019). Valuing urban green spaces in mitigating climate change: a city-wide estimate of aboveground carbon stored in urban green spaces of China’s Capital. Glob Change Biol 25, 1717–1732.

    Article  Google Scholar 

  • Sun, Y., Yang, Y., Zhao, X., Tang, Z., Wang, S., and Fang, J. (2021). Global patterns and climatic drivers of above- and belowground net primary productivity in grasslands. Sci China Life Sci 64, 739–751.

    Article  CAS  PubMed  Google Scholar 

  • Suntharalingam, P., Randerson, J.T., Krakauer, N., Logan, J.A., and Jacob, D.J. (2005). Influence of reduced carbon emissions and oxidation on the distribution of atmospheric CO2: implications for inversion analyses. Glob Biogeochem Cycle 19, GB4003.

    Article  CAS  Google Scholar 

  • Tagesson, T., Schurgers, G., Horion, S., Ciais, P., Tian, F., Brandt, M., Ahlström, A., Wigneron, J.P., Ardö, J., Olin, S., et al. (2020). Recent divergence in the contributions of tropical and boreal forests to the terrestrial carbon sink. Nat Ecol Evol 4, 202–209.

    Article  PubMed  Google Scholar 

  • Tang, H., Qiu, J., Van Ranst, E., and Li, C. (2006). Estimations of soil organic carbon storage in cropland of China based on DNDC model. Geoderma 134, 200–206.

    Article  CAS  Google Scholar 

  • Tang, H., Qiu, J., Wang, L., Li, H., Li, C., and van Ranst, E. (2010). Modeling soil organic carbon storage and its dynamics in croplands of China. Agric Sci China 9, 704–712.

    Article  CAS  Google Scholar 

  • Tang, X., Zhao, X., Bai, Y., Tang, Z., Wang, W., Zhao, Y., Wan, H., Xie, Z., Shi, X., Wu, B., et al. (2018). Carbon pools in China’s terrestrial ecosystems: new estimates based on an intensive field survey. Proc Natl Acad Sci USA 115, 4021–4026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tans, P.P., Fung, I.Y., and Takahashi, T. (1990). Observational contrains on the global atmospheric CO2 budget. Science 247, 1431–1438.

    Article  CAS  PubMed  Google Scholar 

  • Tao, B., Cao, M.K., Li, K.R., Gu, F.X., Ji, J.J., Huang, M., and Zhang, L.M. (2007). Spatial patterns of terrestrial net ecosystem productivity in China during 1981–2000. Sci China Ser D 50, 745–753.

    Article  Google Scholar 

  • Tao, F., Palosuo, T., Valkama, E., and Mäkipää, R. (2019). Cropland soils in China have a large potential for carbon sequestration based on literature survey. Soil Tillage Res 186, 70–78.

    Article  Google Scholar 

  • Tao, Y., and Zhang, Y.M. (2013). Evaluation of vegetation biomass carbon storage in deserts of Central Asia (in Chinese). Arid Land Geo 36, 615–622.

    Google Scholar 

  • Thompson, R.L., Patra, P.K., Chevallier, F., Maksyutov, S., Law, R.M., Ziehn, T., van der Laan-Luijkx, I.T., Peters, W., Ganshin, A., Zhuravlev, R., et al. (2016). Top-down assessment of the Asian carbon budget since the mid 1990s. Nat Commun 7, 10724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian, H., Melillo, J.M., Kicklighter, D.W., McGuire, A.D., and Helfrich, J. (1999). The sensitivity of terrestrial carbon storage to historical climate variability and atmospheric CO2 in the United States. Tellus B 51, 414–452.

    Article  Google Scholar 

  • Tian, H., Melillo, J., Lu, C., Kicklighter, D., Liu, M., Ren, W., Xu, X., Chen, G., Zhang, C., Pan, S., et al. (2011a). China’s terrestrial carbon balance: contributions from multiple global change factors. Glob Biogeochem Cycle 25, GB1007.

    Article  CAS  Google Scholar 

  • Tian, H., Xu, X., Lu, C., Liu, M., Ren, W., Chen, G., Melillo, J., and Liu, J. (2011b). Net exchanges of CO2, CH4, and N2O between China’s terrestrial ecosystems and the atmosphere and their contributions to global climate warming. J Geophys Res 116, G02011.

    Google Scholar 

  • Tian, H., Chen, G., Zhang, C., Liu, M., Sun, G., Chappelka, A., Ren, W., Xu, X., Lu, C., Pan, S., et al. (2012). Century-scale responses of ecosystem carbon storage and flux to multiple environmental changes in the southern United States. Ecosystems 15, 674–694.

    Article  CAS  Google Scholar 

  • Tiefenbacher, A., Sandén, T., Haslmayr, H.P., Miloczki, J., Wenzel, W., and Spiegel, H. (2021). Optimizing carbon sequestration in croplands: a synthesis. Agronomy 11, 882.

    Article  Google Scholar 

  • Turner, D.P., Koerper, G.J., Harmon, M.E., and Lee, J.J. (1995). A carbon budget for forests of the conterminous United States. Ecol Appl 5, 421–436.

    Article  Google Scholar 

  • Valentini, R., Arneth, A., Bombelli, A., Castaldi, S., Cazzolla Gatti, R., Chevallier, F., Ciais, P., Grieco, E., Hartmann, J., Henry, M., et al. (2014). A full greenhouse gases budget of Africa: synthesis, uncertainties, and vulnerabilities. Biogeosciences 11, 381–407.

    Article  CAS  Google Scholar 

  • Valentini, R., Matteucci, G., Dolman, A.J., Schulze, E.D., Rebmann, C., Moors, E.J., Granier, A., Gross, P., Jensen, N.O., Pilegaard, K., et al. (2000). Respiration as the main determinant of carbon balance in European forests. Nature 404, 861–865.

    Article  CAS  PubMed  Google Scholar 

  • Vasenev, V., and Kuzyakov, Y. (2018). Urban soils as hot spots of anthropogenic carbon accumulation: review of stocks, mechanisms and driving factors. Land Degrad Dev 29, 1607–1622.

    Article  Google Scholar 

  • Villa, J.A., and Bernal, B. (2018). Carbon sequestration in wetlands, from science to practice: an overview of the biogeochemical process, measurement methods, and policy framework. Ecol Eng 114, 115–128.

    Article  Google Scholar 

  • Wang, F., Sanders, C.J., Santos, I.R., Tang, J., Schuerch, M., Kirwan, M.L., Kopp, R.E., Zhu, K., Li, X., Yuan, J., et al. (2021b). Global blue carbon accumulation in tidal wetlands increases with climate change. Natl Sci Rev 8, nwaa296.

    Article  CAS  PubMed  Google Scholar 

  • Wang, G., Zhang, W., Sun, W., Li, T., and Han, P. (2017b). Modeling soil organic carbon dynamics and their driving factors in the main global cereal cropping systems. Atmos Chem Phys 17, 11849–11859.

    Article  CAS  Google Scholar 

  • Wang, J., Feng, L., Palmer, P.I., Liu, Y., Fang, S., Bösch, H., O’Dell, C.W., Tang, X., Yang, D., Liu, L., et al. (2020a). Large Chinese land carbon sink estimated from atmospheric carbon dioxide data. Nature 586, 720–723.

    Article  CAS  PubMed  Google Scholar 

  • Wang, L.X., Gao, J.X., Shen, W.M., Shi, Y.L., and Zhang, H.W. (2021a). Carbon storage in vegetation and soil in Chinese ecosystems estimated by carbon transfer rate method. Ecosphere 12, e03341.

    Article  Google Scholar 

  • Wang, S., Chen, J.M., Ju, W.M., Feng, X., Chen, M., Chen, P., and Yu, G. (2007). Carbon sinks and sources in China’s forests during 1901–2001. J Environ Manage 85, 524–537.

    Article  CAS  PubMed  Google Scholar 

  • Wang, S.Q., Zhou, C.H., Li, K.R., Zhu, S.L., and Huang, F.H. (2000). Analysis on spatial distribution characteristics of soil organic carbon reservoir in China (in Chinese). Acta Geogr Sin 55, 533–544.

    Google Scholar 

  • Wang, S., Zhang, Y., Ju, W., Chen, J.M., Ciais, P., Cescatti, A., Sardans, J., Janssens, I.A., Wu, M., Berry, J.A., et al. (2020b). Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science 370, 1295–1300.

    Article  CAS  PubMed  Google Scholar 

  • Wang, S., Xu, L., Zhuang, Q., and He, N. (2021c). Investigating the spatio-temporal variability of soil organic carbon stocks in different ecosystems of China. Sci Total Environ 758, 143644.

    Article  CAS  PubMed  Google Scholar 

  • Wang, S., Tian, H., Liu, J., and Pan, S. (2003). Pattern and change of soil organic carbon storage in China: 1960s-1980s. Tellus B 55, 416–427.

    Google Scholar 

  • Wang, X., Wang, C., and Bond-Lamberty, B. (2017a). Quantifying and reducing the differences in forest CO2-fluxes estimated by eddy covariance, biometric and chamber methods: a global synthesis. Agric For Meteor 247, 93–103.

    Article  Google Scholar 

  • Wei, D., Qi, Y., Ma, Y., Wang, X., Ma, W., Gao, T., Huang, L., Zhao, H., Zhang, J., and Wang, X. (2021). Plant uptake of CO2 outpaces losses from permafrost and plant respiration on the Tibetan Plateau. Proc Natl Acad Sci USA 118, e2015283118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whittaker, R.H., and Likens, G.E. (1973). Carbon in the biota. In: Woodwell, G.M., and Pecan, E.V., eds. Carbon and the Biosphere, Proceeding of the 24th Brookhaven Symposium in Biology. Springfield: Technical Information Center, Office of Information Services, US Atomic Energy Commission. 281–302.

    Google Scholar 

  • Williams, R.G., Katavouta, A., and Goodwin, P. (2019). Carbon-cycle feedbacks operating in the climate system. Curr Clim Change Rep 5, 282–295.

    Article  Google Scholar 

  • Wofsy, S.C., Goulden, M.L., Munger, J.W., Fan, S.M., Bakwin, P.S., Daube, B.C., Bassow, S.L., and Bazzaz, F.A. (1993). Net exchange of CO2 in a mid-latitude forest. Science 260, 1314–1317.

    Article  CAS  PubMed  Google Scholar 

  • Wohlfahrt, G., Fenstermaker, L.F., and ArnoneIII, J.A. (2008). Large annual net ecosystem CO2 uptake of a Mojave Desert ecosystem. Glob Change Biol 14, 1475–1487.

    Article  Google Scholar 

  • Wong, C.S. (1978). Atmospheric input of carbon dioxide from burning wood. Science 200, 197–200.

    Article  CAS  PubMed  Google Scholar 

  • Woodwell, G.M., Whittaker, R.H., Reiners, W.A., Likens, G.E., Delwiche, C.C., and Botkin, D.B. (1978). The biota and the world carbon budget. Science 199, 141–146.

    Article  CAS  PubMed  Google Scholar 

  • Woodwell, G.M. (1983). Biotic effects on the concentration of atmospheric carbon dioxide: a review and projection. In: U.S. National Research Council, ed. Changing Climate. Washington D C: NAS Press. 216–241.

    Google Scholar 

  • Wu, H., Guo, Z., and Peng, C. (2003). Land use induced changes of organic carbon storage in soils of China. Glob Change Biol 9, 305–315.

    Article  Google Scholar 

  • Xiao, D., Deng, L., Kim, D.G., Huang, C., and Tian, K. (2019). Carbon budgets of wetland ecosystems in China. Glob Change Biol 25, 2061–2076.

    Article  Google Scholar 

  • Xiao, J., Ollinger, S.V., Frolking, S., Hurtt, G.C., Hollinger, D.Y., Davis, K. J., Pan, Y., Zhang, X., Deng, F., Chen, J., et al. (2014). Data-driven diagnostics of terrestrial carbon dynamics over North America. Agric For Meteor 197, 142–157.

    Article  Google Scholar 

  • Xie, J., Zha, T., Jia, X., Qian, D., Wu, B., Zhang, Y., Bourque, C.P.A., Chen, J., Sun, G., and Peltola, H. (2015). Irregular precipitation events in control of seasonal variations in CO2 exchange in a cold desert-shrub ecosystem in northwest China. J Arid Environ 120, 33–41.

    Article  Google Scholar 

  • Xie, X.L., Sun, B., Zhou, H.Z., and Li, Z.P. (2004a). Soil carbon stocks and their influencing factors under native vegetations in China (in Chinese). Acta Pedo Sin 41, 687–699.

    Google Scholar 

  • Xie, X.L., Sun, B., Zhou, H.Z., Li, Z.P., and Li, A.B. (2004b). Organic carbon density and storage in soils of China and spatial analysis (in Chinese). Acta Pedo Sin 41, 35–43.

    Google Scholar 

  • Xie, X.L., Sun, B., Zhou, H.Z., and Li, A.B. (2004c). Soil organic carbon storage in China. Pedosphere 14, 491–500.

    CAS  Google Scholar 

  • Xie, Z., Zhu, J., Liu, G., Cadisch, G., Hasegawa, T., Chen, C., Sun, H., Tang, H., and Zeng, Q. (2007). Soil organic carbon stocks in China and changes from 1980s to 2000s. Glob Change Biol 13, 1989–2007.

    Article  Google Scholar 

  • Xie, Z.B., Liu, G., Bei, Q.C., Tang, H.Y., Liu, J.S., Sun, H.F., Xu, Y.P., Zhu, J.G., and Cadisch, G. (2010). CO2 mitigation potential in farmland of China by altering current organic matter amendment pattern. Sci China Earth Sci 53, 1351–1357.

    Article  CAS  Google Scholar 

  • Xu, B., Yang, Y., Li, P., Shen, H., and Fang, J. (2014). Global patterns of ecosystem carbon flux in forests: a biometric data-based synthesis. Glob Biogeochem Cycle 28, 962–973.

    Article  CAS  Google Scholar 

  • Xu, L., He, N.P., Yu, G.R., Wen, D., Gao, Y., and He, H.L. (2015). Differences in pedotransfer functions of bulk density lead to high uncertainty in soil organic carbon estimation at regional scales: evidence from Chinese terrestrial ecosystems. J Geophys Res Biogeosci 120, 1567–1575.

    Article  CAS  Google Scholar 

  • Xu, L., Saatchi, S.S., Yang, Y., Yu, Y., Pongratz, J., Bloom, A.A., Bowman, K., Worden, J., Liu, J., Yin, Y., et al. (2021). Changes in global terrestrial live biomass over the 21st century. Sci Adv 7, eabe9829.

    Article  CAS  PubMed  Google Scholar 

  • Xu, L., Yu, G., He, N., Wang, Q., Gao, Y., Wen, D., Li, S., Niu, S., and Ge, J. (2018). Carbon storage in China’s terrestrial ecosystems: a synthesis. Sci Rep 8, 2806.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu, L., Yu, G., and He, N. (2019). Increased soil organic carbon storage in Chinese terrestrial ecosystems from the 1980s to the 2010s. J Geogr Sci 29, 49–66.

    Article  Google Scholar 

  • Yan, X., Cai, Z., Wang, S., and Smith, P. (2011). Direct measurement of soil organic carbon content change in the croplands of China. Glob Change Biol 17, 1487–1496.

    Article  Google Scholar 

  • Yang, D., Zhang, H., Liu, Y., Chen, B., Cai, Z., and Lü, D. (2017b). Monitoring carbon dioxide from space: retrieval algorithm and flux inversion based on GOSAT data and using CarbonTracker-China. Adv Atmos Sci 34, 965–976.

    Article  CAS  Google Scholar 

  • Yang, F., Huang, J., Zhou, C., Yang, X., Ali, M., Li, C., Pan, H., Huo, W., Yu, H., Liu, X., et al. (2020). Taklimakan desert carbon-sink decreases under climate change. Sci Bull 65, 431–433.

    Article  CAS  Google Scholar 

  • Yang, J., Ji, X., Deane, D., Wu, L., and Chen, S. (2017a). Spatiotemporal distribution and driving factors of forest biomass carbon storage in China: 1977–2013. Forests 8, 263.

    Article  Google Scholar 

  • Yang, Y., Mohammat, A., Feng, J., Zhou, R., and Fang, J. (2007). Storage, patterns and environmental controls of soil organic carbon in China. Biogeochemistry 84, 131–141.

    Article  Google Scholar 

  • Yang, Y., Fang, J., Ma, W., Smith, P., Mohammat, A., Wang, S., and Wang, W. (2010). Soil carbon stock and its changes in northern China’s grasslands from 1980s to 2000s. Glob Change Biol 16, 3036–3047.

    Article  Google Scholar 

  • Yao, Y., Li, Z., Wang, T., Chen, A., Wang, X., Du, M., Jia, G., Li, Y., Li, H., Luo, W., et al. (2018). A new estimation of China’s net ecosystem productivity based on eddy covariance measurements and a model tree ensemble approach. Agric For Meteor 253–254, 84–93.

    Article  Google Scholar 

  • Yin, Y., Bloom, A.A., Worden, J., Saatchi, S., Yang, Y., Williams, M., Liu, J., Jiang, Z., Worden, H., Bowman, K., et al. (2020). Fire decline in dry tropical ecosystems enhances decadal land carbon sink. Nat Commun 11, 1900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, D.S., Shi, X.Z., Wang, H.J., Sun, W.X., Chen, J.M., Liu, Q.H., and Zhao, Y.C. (2007). Regional patterns of soil organic carbon stocks in China. J Environ Manage 85, 680–689.

    Article  CAS  PubMed  Google Scholar 

  • Yu, G., Chen, Z., Piao, S., Peng, C., Ciais, P., Wang, Q., Li, X., and Zhu, X. (2014). High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region. Proc Natl Acad Sci USA 111, 4910–4915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, G.R., Li, X.R., Wang, Q.F., and Li, S.G. (2010). Carbon storage and its spatial pattern of terrestrial ecosystem in China. J Res Ecol 1, 97–109.

    Google Scholar 

  • Yu, G.R., Zhu, X.J., Fu, Y.L., He, H.L., Wang, Q.F., Wen, X.F., Li, X.R., Zhang, L.M., Zhang, L., Su, W., et al. (2013a). Spatial patterns and climate drivers of carbon fluxes in terrestrial ecosystems of China. Glob Change Biol 19, 798–810.

    Article  Google Scholar 

  • Yu, L., Gu, F., Huang, M., Tao, B., Hao, M., and Wang, Z. (2020). Impacts of 1.5°C and 2°C global warming on net primary productivity and carbon balance in China’s terrestrial ecosystems. Sustainability 12, 2849.

    Article  Google Scholar 

  • Yu, Y., Huang, Y., and Zhang, W. (2013b). Projected changes in soil organic carbon stocks of China’s croplands under different agricultural managements, 2011–2050. Agr Ecosyst Environ 178, 109–120.

    Article  Google Scholar 

  • Yu, Y., Huang, Y., and Zhang, W. (2012). Modeling soil organic carbon change in croplands of China, 1980–2009. Glob Planet Change 82–83, 115–128.

    Article  Google Scholar 

  • Zhang, C., Ju, W., Chen, J.M., Zan, M., Li, D., Zhou, Y., and Wang, X. (2013). China’s forest biomass carbon sink based on seven inventories from 1973 to 2008. Clim Change 118, 933–948.

    Article  CAS  Google Scholar 

  • Zhang, F., Wang, Z., Glidden, S., Wu, Y.P., Tang, L., Liu, Q.Y., Li, C.S., and Frolking, S. (2017). Changes in the soil organic carbon balance on China’s cropland during the last two decades of the 20th century. Sci Rep 7, 7144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, H.F., Chen, B.Z., van der Laan-Luijk, I.T., Machida, T., Matsueda, H., Sawa, Y., Fukuyama, Y., Langenfelds, R., van der Schoot, M., Xu, G., et al. (2014a). Estimating Asian terrestrial carbon fluxes from CONTRAIL aircraft and surface CO2 observations for the period 2006–2010. Atmos Chem Phys 14, 5807–5824.

    Article  CAS  Google Scholar 

  • Zhang, H.F., Chen, B.Z., van der Laan-Luijkx, I.T., Chen, J., Xu, G., Yan, J. W., Zhou, L.X., Fukuyama, Y., Tans, P.P., and Peters, W. (2014b). Net terrestrial CO2 exchange over China during 2001–2010 estimated with an ensemble data assimilation system for atmospheric CO2. J Geophys Res Atmos 119, 3500–3515.

    Article  CAS  Google Scholar 

  • Zhang, L., Zhou, G.S., Ji, Y.H., and Bai, Y.F. (2016). Spatiotemporal dynamic simulation of grassland carbon storage in China. Sci China Earth Sci 59, 1946–1958.

    Article  CAS  Google Scholar 

  • Zhang, X.H., Li, D.Y., Pan, G.X., Li, L.Q., Lin, F., and Xu, X.W. (2008). Conservation of wetland soil carbon stock and climate change of China (in Chinese). Adv Clim Change Res 4, 202–208.

    Google Scholar 

  • Zhang, Y., Goll, D., Bastos, A., Balkanski, Y., Boucher, O., Cescatti, A., Collier, M., Gasser, T., Ghattas, J., Li, L., et al. (2019). Increased global land carbon sink due to aerosol-induced cooling. Glob Biogeochem Cycle 33, 439–457.

    Article  CAS  Google Scholar 

  • Zhao, S., Zhu, C., Zhou, D., Huang, D., and Werner, J. (2013). Organic carbon storage in China’s urban areas. PLoS ONE 8, e71975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng, T., Zhu, J., Wang, S., and Fang, J. (2016). When will China achieve its carbon emission peak? Natl Sci Rev 3, 8–12.

    Article  Google Scholar 

  • Zheng, Y.M., Niu, Z.G., Gong, P., Dai, Y.J., and Shangguan, W. (2013). Preliminary estimation of the organic carbon pool in China’s wetlands (in Chinese). Chin Sci Bull 58, 170–180.

    Article  Google Scholar 

  • Zhu, J., Hu, H., Tao, S., Chi, X., Li, P., Jiang, L., Ji, C., Zhu, J., Tang, Z., Pan, Y., et al. (2017). Carbon stocks and changes of dead organic matter in China’s forests. Nat Commun 8, 151.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu, X.J., Yu, G.R., He, H.L., Wang, Q.F., Chen, Z., Gao, Y.N., Zhang, Y. P., Zhang, J.H., Yan, J.H., Wang, H.M., et al. (2014). Geographical statistical assessments of carbon fluxes in terrestrial ecosystems of China: results from upscaling network observations. Glob Planet Change 118, 52–61.

    Article  Google Scholar 

  • Zhu, Z., Piao, S., Myneni, R.B., Huang, M., Zeng, Z., Canadell, J.G., Ciais, P., Sitch, S., Friedlingstein, P., Arneth, A., et al. (2016). Greening of the Earth and its drivers. Nat Clim Change 6, 791–795.

    Article  CAS  Google Scholar 

  • Zinke, P.J., Stangenberger, A.G., Post, W.M., Emanuel, W.R., and Olson, J. S. (1984). Worldwide Organic Soil Carbon and Nitrogen data, ORN-LITM- 8857. Oak Ridge: Oak Ridge National Laboratory.

    Google Scholar 

  • Zomer, R.J., Bossio, D.A., Sommer, R., and Verchot, L.V. (2017). Global sequestration potential of increased organic carbon in cropland soils. Sci Rep 7, 15554.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31988102). We thank all scientists and institutions who provided data and modelling results for (i) the Global Carbon Budget 2020 by the Global Carbon Project, (ii) the Multi-scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP; https://daac.ornl.gov/NACP/guides/NACP_MsTMIP_TBMO.html) and (iii) the Inter-Sectoral Impact Model Intercomparison Project Phase 2a (ISIMIP; https://doi.org/10.5880/PIK.2019.005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingyun Fang.

Ethics declarations

Compliance and ethics The author(s) declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Shi, Y., Sun, W. et al. Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality. Sci. China Life Sci. 65, 861–895 (2022). https://doi.org/10.1007/s11427-021-2045-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-021-2045-5

Keywords

Navigation