Skip to main content
Log in

Integration of rhythmic metabolome and transcriptome provides insights into the transmission of rhythmic fluctuations and temporal diversity of metabolism in rice

  • Research Paper
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Various aspects of the organisms adapt to cyclically changing environmental conditions via transcriptional regulation. However, the role of rhythmicity in altering the global aspects of metabolism is poorly characterized. Here, we subjected four rice (Oryza sativa) varieties to a range of metabolic profiles and RNA-seq to investigate the temporal relationships of rhythm between transcription and metabolism. More than 40% of the rhythmic genes and a quarter of metabolites conservatively oscillated across four rice accessions. Compared with the metabolome, the transcriptome was more strongly regulated by rhythm; however, the rhythm of metabolites had an obvious opposite trend between day and night. Through association analysis, the time delay of rhythmic transmission from the transcript to the metabolite level was ∼4 h under long-day conditions, although the transmission was nearly synchronous for carbohydrate and nucleotide metabolism. The rhythmic accumulation of metabolites maintained highly coordinated temporal relationships in the metabolic network, whereas the correlation of some rhythmic metabolites, such as branched-chain amino acids (BCAAs), was significantly different intervariety. We further demonstrated that the cumulative diversity of BCAAs was due to the differential expression of branched-chain aminotransferase 2 at dawn. Our research reveals the flexible pattern of rice metabolic rhythm existing with conservation and diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, S., Grundy, J., Veflingstad, S.R., Dyer, N.P., Hannah, M.A., Ott, S., and Carré, I.A. (2018). Circadian control of abscisic acid biosynthesis and signalling pathways revealed by genome-wide analysis of lhy binding targets. New Phytol 220, 893–907.

    Article  CAS  PubMed  Google Scholar 

  • Annunziata, M.G., Apelt, F., Carillo, P., Krause, U., Feil, R., Koehl, K., Lunn, J.E., and Stitt, M. (2018). Response of Arabidopsis primary metabolism and circadian clock to low night temperature in a natural light environment. J Exp Bot 69, 4881–4895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armengaud, P., Sulpice, R., Miller, A.J., Stitt, M., Amtmann, A., and Gibon, Y. (2009). Multilevel analysis of primary metabolism provides new insights into the role of potassium nutrition for glycolysis and nitrogen assimilation in Arabidopsis roots. Plant Physiol 150, 772–785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bass, J., and Takahashi, J.S. (2010). Circadian integration of metabolism and energetics. Science 330, 1349–1354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bendix, C., Marshall, C.M., and Harmon, F.G. (2015). Circadian clock genes universally control key agricultural traits. Mol Plant 8, 1135–1152.

    Article  CAS  PubMed  Google Scholar 

  • Binder, S. (2010). Branched-chain amino acid metabolism in Arabidopsis thaliana. Arabidopsis Book 8, e0137.

    Article  PubMed  PubMed Central  Google Scholar 

  • Caster, S.Z., Castillo, K., Sachs, M.S., and Bell-Pedersen, D. (2016). Circadian clock regulation of mRNA translation through eukaryotic elongation factor eEF-2. Proc Natl Acad Sci USA 113, 9605–9610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, C., Chen, H., Zhang, Y., Thomas, H.R., Frank, M.H., He, Y., and Xia, R. (2020). Tbtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant 13, 1194–1202.

    Article  CAS  PubMed  Google Scholar 

  • Chen, R., Deng, Y., Ding, Y., Guo, J., Qiu, J., Wang, B., Wang, C., Xie, Y., Zhang, Z., Chen, J., et al. (2022). Rice functional genomics: decades’ efforts and roads ahead. Sci China Life Sci 65, 33–92.

    Article  PubMed  Google Scholar 

  • Chen, Z.J., and Mas, P. (2019). Interactive roles of chromatin regulation and circadian clock function in plants. Genome Biol 20, 62.

    Article  PubMed  PubMed Central  Google Scholar 

  • Covington, M.F., Maloof, J.N., Straume, M., Kay, S.A., and Harmer, S.L. (2008). Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development. Genome Biol 9, R130.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Montaigu, A., Giakountis, A., Rubin, M., Tóth, R., Cremer, F., Sokolova, V., Porri, A., Reymond, M., Weinig, C., and Coupland, G. (2015). Natural diversity in daily rhythms of gene expression contributes to phenotypic variation. Proc Natl Acad Sci USA 112, 905–910.

    Article  CAS  PubMed  Google Scholar 

  • Dyar, K.A., Lutter, D., Artati, A., Ceglia, N.J., Liu, Y., Armenta, D., Jastroch, M., Schneider, S., de Mateo, S., Cervantes, M., et al. (2018). Atlas of circadian metabolism reveals system-wide coordination and communication between clocks. Cell 174, 1571–1585.e11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eckel-Mahan, K., and Sassone-Corsi, P. (2013). Metabolism and the circadian clock converge. Physiol Rev 93, 107–135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edgar, R.S., Green, E.W., Zhao, Y., van Ooijen, G., Olmedo, M., Qin, X., Xu, Y., Pan, M., Valekunja, U.K., Feeney, K.A., et al. (2012). Peroxiredoxins are conserved markers of circadian rhythms. Nature 485, 459–464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Espinoza, C., Degenkolbe, T., Caldana, C., Zuther, E., Leisse, A., Willmitzer, L., Hincha, D.K., and Hannah, M.A. (2010). Interaction with diurnal and circadian regulation results in dynamic metabolic and transcriptional changes during cold acclimation in Arabidopsis. PLoS ONE 5, e14101.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fang, C., Li, K., Wu, Y., Wang, D., Zhou, J., Liu, X., Li, Y., Jin, C., Liu, X., Mur, L.A.J., et al. (2019). OsTSD2-mediated cell wall modification affects ion homeostasis and salt tolerance. Plant Cell Environ 42, 1503–1512.

    Article  CAS  PubMed  Google Scholar 

  • Farré, E.M., and Kay, S.A. (2007). Prr7 protein levels are regulated by light and the circadian clock in Arabidopsis. Plant J 52, 548–560.

    Article  PubMed  CAS  Google Scholar 

  • Farré, E.M., and Weise, S.E. (2012). The interactions between the circadian clock and primary metabolism. Curr Opin Plant Biol 15, 293–300.

    Article  PubMed  CAS  Google Scholar 

  • Fernie, A.R., and Stitt, M. (2012). On the discordance of metabolomics with proteomics and transcriptomics: coping with increasing complexity in logic, chemistry, and network interactions scientific correspondence. Plant Physiol 158, 1139–1145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrari, C., Proost, S., Janowski, M., Becker, J., Nikoloski, Z., Bhattacharya, D., Price, D., Tohge, T., Bar-Even, A., Fernie, A., et al. (2019). Kingdom-wide comparison reveals the evolution of diurnal gene expression in Archaeplastida. Nat Commun 10, 737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filichkin, S.A., Breton, G., Priest, H.D., Dharmawardhana, P., Jaiswal, P., Fox, S.E., Michael, T.P., Chory, J., Kay, S.A., and Mockler, T.C. (2011). Global profiling of rice and poplar transcriptomes highlights key conserved circadian-controlled pathways and cis-regulatory modules. PLoS ONE 6, e16907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibon, Y., Blaesing, O.E., Hannemann, J., Carillo, P., Hohne, M., Hendriks, J.H.M., Palacios, N., Cross, J., Selbig, J., and Stitt, M. (2004). Arobot-based platform to measure multiple enzyme activities in Arabidopsis using a set of cycling assays: comparison of changes of enzyme activities and transcript levels during diurnal cycles and in prolonged darkness. Plant Cell 16, 3304–3325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodspeed, D., Chehab, E.W., Covington, M.F., and Braam, J. (2013). Circadian control of jasmonates and salicylates. Plant Signal Behav 8, e23123.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Graf, A., Coman, D., Uhrig, R.G., Walsh, S., Flis, A., Stitt, M., and Gruissem, W. (2017). Parallel analysis of Arabidopsis circadian clock mutants reveals different scales of transcriptome and proteome regulation. Open Biol 7, 160333.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Greenham, K., Guadagno, C.R., Gehan, M.A., Mockler, T.C., Weinig, C., Ewers, B.E., and McClung, C.R. (2017). Temporal network analysis identifies early physiological and transcriptomic indicators of mild drought in Brassica rapa. eLife 6, e29655.

    Article  PubMed  PubMed Central  Google Scholar 

  • Greenham, K., and McClung, C.R. (2015). Integrating circadian dynamics with physiological processes in plants. Nat Rev Genet 16, 598–610.

    Article  CAS  PubMed  Google Scholar 

  • Harmer, S.L. (2009). The circadian system in higher plants. Annu Rev Plant Biol 60, 357–377.

    Article  CAS  PubMed  Google Scholar 

  • Harmer, S.L., Hogenesch, J.B., Straume, M., Chang, H.S., Han, B., Zhu, T., Wang, X., Kreps, J.A., and Kay, S.A. (2000). Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290, 2110–2113.

    Article  CAS  PubMed  Google Scholar 

  • Haydon, M.J., Mielczarek, O., Robertson, F.C., Hubbard, K.E., and Webb, A.A.R. (2013). Photosynthetic entrainment of the Arabidopsis thaliana circadian clock. Nature 502, 689–692.

    Article  CAS  PubMed  Google Scholar 

  • Heintzen, C., Nater, M., Apel, K., and Staiger, D. (1997). AtGRP7, a nuclear RNA-binding protein as a component of a circadian-regulated negative feedback loop in Arabidopsis thaliana. Proc Natl Acad Sci USA 94, 8515–8520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higashi, T., Aoki, K., Nagano, A.J., Honjo, M.N., and Fukuda, H. (2016). Circadian oscillation of the lettuce transcriptome under constant light and light-dark conditions. Front Plant Sci 7.

  • Hu, Y., Jiang, L., Wang, F., and Yu, D. (2013). Jasmonate regulates the INDUCER OF CBF EXPRESSION-C-REPEAT BINDING FACTOR/DRE BINDING FACTOR1 cascade and freezing tolerance in Arabidopsis. Plant Cell 25, 2907–2924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu, Y., Jiang, Y., Han, X., Wang, H., Pan, J., and Yu, D. (2017). Jasmonate regulates leaf senescence and tolerance to cold stress: crosstalk with other phytohormones. J Exp Bot 68, 1361–1369.

    Article  CAS  PubMed  Google Scholar 

  • Hughes, M.E., Hogenesch, J.B., and Kornacker, K. (2010). JTK_CYCLE: an efficient nonparametric algorithm for detecting rhythmic components in genome-scale data sets. J Biol Rhythms 25, 372–380.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hurley, J.M., Jankowski, M.S., De Los Santos, H., Crowell, A.M., Fordyce, S.B., Zucker, J.D., Kumar, N., Purvine, S.O., Robinson, E.W., Shukla, A., et al. (2018). Circadian proteomic analysis uncovers mechanisms of post-transcriptional regulation in metabolic pathways. Cell Syst 7, 613–626.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang, H., Cho, M.H., Hahn, B.S., Lim, H., Kwon, Y.K., Hahn, T.R., and Bhoo, S.H. (2011). Proteomic identification of rhythmic proteins in rice seedlings. Biochim Biophys Acta 1814, 470–479.

    Article  CAS  PubMed  Google Scholar 

  • Ito, S., Nakamichi, N., Kiba, T., Yamashino, T., and Mizuno, T. (2007). Rhythmic and light-inducible appearance of clock-associated pseudoresponse regulator protein PRR9 through programmed degradation in the dark in Arabidopsis thaliana. Plant Cell Physiol 48, 1644–1651.

    Article  CAS  PubMed  Google Scholar 

  • Jin, C., Fang, C., Zhang, Y., Fernie, A.R., and Luo, J. (2021). Plant metabolism paves the way for breeding crops with high nutritional value and stable yield. Sci China Life Sci 64, 2202–2205.

    Article  PubMed  Google Scholar 

  • Kim, J.A., Kim, H.S., Choi, S.H., Jang, J.Y., Jeong, M.J., and Lee, S.I. (2017). The importance of the circadian clock in regulating plant metabolism. Int J Mol Sci 18, 2680.

    Article  PubMed Central  CAS  Google Scholar 

  • Ko, D.K., Rohozinski, D., Song, Q., Taylor, S.H., Juenger, T.E., Harmon, F. G., and Chen, Z.J. (2016). Temporal shift of circadian-mediated gene expression and carbon fixation contributes to biomass heterosis in maize hybrids. PLoS Genet 12, e1006197.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krishnaiah, S.Y., Wu, G., Altman, B.J., Growe, J., Rhoades, S.D., Coldren, F., Venkataraman, A., Olarerin-George, A.O., Francey, L.J., Mukherjee, S., et al. (2017). Clock regulation of metabolites reveals coupling between transcription and metabolism. Cell Metab 25, 1206.

    Article  CAS  PubMed  Google Scholar 

  • Kubota, A., Shim, J.S., and Imaizumi, T. (2015). Natural variation in transcriptional rhythms modulates photoperiodic responses. Trends Plant Sci 20, 259–261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langfelder, P., and Horvath, S. (2008). WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee, H.G., Mas, P., and Seo, P.J. (2016). Myb96 shapes the circadian gating of aba signaling in Arabidopsis. Sci Rep 6, 17754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Litthauer, S., Chan, K.X., and Jones, M.A. (2018). 3′-Phosphoadenosine 5′-phosphate accumulation delays the circadian system. Plant Physiol 176, 3120–3135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López-Ibáñez, J., Pazos, F., and Chagoyen, M. (2016). Mbrole 2.0—functional enrichment of chemical compounds. Nucleic Acids Res 44, W201–W204.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luo, J. (2015). Metabolite-based genome-wide association studies in plants. Curr Opin Plant Biol 24, 31–38.

    Article  CAS  PubMed  Google Scholar 

  • Martinière, A., Shvedunova, M., Thomson, A.J.W., Evans, N.H., Penfield, S., Runions, J., and McWatters, H.G. (2011). Homeostasis of plasma membrane viscosity in fluctuating temperatures. New Phytol 192, 328–337.

    Article  PubMed  CAS  Google Scholar 

  • Matsuzaki, J., Kawahara, Y., and Izawa, T. (2015). Punctual transcriptional regulation by the rice circadian clock under fluctuating field conditions. Plant Cell 27, 633–648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McClung, C.R. (2006). Plant circadian rhythms. Plant Cell 18, 792–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McClung, C.R. (2019). The plant circadian oscillator. Biology 8, 14.

    Article  CAS  PubMed Central  Google Scholar 

  • Michael, T.P., Mockler, T.C., Breton, G., McEntee, C., Byer, A., Trout, J. D., Hazen, S.P., Shen, R., Priest, H.D., Sullivan, C.M., et al. (2008). Network discovery pipeline elucidates conserved time-of-day-specific cis-regulatory modules. PLoS Genet 4, e14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Missra, A., Ernest, B., Lohoff, T., Jia, Q., Satterlee, J., Ke, K., and von Arnim, A.G. (2015). The circadian clock modulates global daily cycles of mRNA ribosome loading. Plant Cell 27, 2582–2599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller, N.A., Wijnen, C.L., Srinivasan, A., Ryngajllo, M., Ofner, I., Lin, T., Ranjan, A., West, D., Maloof, J.N., Sinha, N.R., et al. (2016). Domestication selected for deceleration of the circadian clock in cultivated tomato. Nat Genet 48, 89–93.

    Article  PubMed  CAS  Google Scholar 

  • Murakami, M., Tago, Y., Yamashino, T., and Mizuno, T. (2007). Comparative overviews of clock-associated genes of Arabidopsis thaliana and Oryza sativa. Plant Cell Physiol 48, 110–121.

    Article  CAS  PubMed  Google Scholar 

  • Nagel, D.H., Doherty, C.J., Pruneda-Paz, J.L., Schmitz, R.J., Ecker, J.R., and Kay, S.A. (2015). Genome-wide identification of CCA1 targets uncovers an expanded clock network in Arabidopsis. Proc Natl Acad Sci USA 112, E4802–E4810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ni, Z., Kim, E.D., Ha, M., Lackey, E., Liu, J., Zhang, Y., Sun, Q., and Chen, Z.J. (2009). Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids. Nature 457, 327–331.

    Article  CAS  PubMed  Google Scholar 

  • Noguchi, R., Kubota, H., Yugi, K., Toyoshima, Y., Komori, Y., Soga, T., and Kuroda, S. (2013). The selective control of glycolysis, gluconeogenesis and glycogenesis by temporal insulin patterns. Mol Syst Biol 9, 664.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nohales, M.A., and Kay, S.A. (2016). Molecular mechanisms at the core of the plant circadian oscillator. Nat Struct Mol Biol 23, 1061–1069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prusty, M.R., Bdolach, E., Yamamoto, E., Tiwari, L.D., Silberman, R., Doron-Faigenbaum, A., Neyhart, J.L., Bonfil, D., Kashkush, K., Pillen, K., et al. (2021). Genetic loci mediating circadian clock output plasticity and crop productivity under barley domestication. New Phytol 230, 1787–1801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rawat, R., Takahashi, N., Hsu, P.Y., Jones, M.A., Schwartz, J., Salemi, M. R., Phinney, B.S., and Harmer, S.L. (2011). Reveille8 and pseudo-reponse regulator5 form a negative feedback loop within the Arabidopsis circadian clock. PLoS Genet 7, e1001350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rey, G., Valekunja, U.K., Feeney, K.A., Wulund, L., Milev, N.B., Stangherlin, A., Ansel-Bollepalli, L., Velagapudi, V., O’Neill, J.S., and Reddy, A.B. (2016). The pentose phosphate pathway regulates the circadian clock. Cell Metab 24, 462–473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robertson, F.C., Skeffington, A.W., Gardner, M.J., and Webb, A.A.R. (2009). Interactions between circadian and hormonal signalling in plants. Plant Mol Biol 69, 419–427.

    Article  CAS  PubMed  Google Scholar 

  • Robles, M.S., Cox, J., and Mann, M. (2014). In-vivo quantitative proteomics reveals a key contribution of post-transcriptional mechanisms to the circadian regulation of liver metabolism. PLoS Genet 10, e1004047.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sanchez-Villarreal, A., Shin, J., Bujdoso, N., Obata, T., Neumann, U., Du, S.X., Ding, Z., Davis, A.M., Shindo, T., Schmelzer, E., et al. (2013). TIME FOR COFFEE is an essential component in the maintenance of metabolic homeostasis in Arabidopsis thaliana. Plant J 76, 188–200.

    CAS  PubMed  Google Scholar 

  • Seaton, D.D., Graf, A., Baerenfaller, K., Stitt, M., Millar, A.J., and Gruissem, W. (2018). Photoperiodic control of the Arabidopsis proteome reveals a translational coincidence mechanism. Mol Syst Biol 14, e7962.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shalit-Kaneh, A., Kumimoto, R.W., Filkov, V., and Harmer, S.L. (2018). Multiple feedback loops of the Arabidopsis circadian clock provide rhythmic robustness across environmental conditions. Proc Natl Acad Sci USA 115, 7147–7152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slotte, T., Holm, K., McIntyre, L.M., Lagercrantz, U., and Lascoux, M. (2007). Differential expression of genes important for adaptation in Capsella bursa-pastoris (Brassicaceae). Plant Physiol 145, 160–173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smolen, P., Baxter, D.A., and Byrne, J.H. (1999). Effects of macromolecular transport and stochastic fluctuations on dynamics of genetic regulatory systems. Am J Physiol 277, C777–C790.

    Article  CAS  PubMed  Google Scholar 

  • Song, H.R., and Noh, Y.S. (2012). Rhythmic oscillation of histone acetylation and methylation at the Arabidopsis central clock loci. Mol Cells 34, 279–287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song, Q., Huang, T.Y., Yu, H.H., Ando, A., Mas, P., Ha, M., and Chen, Z.J. (2019). Diurnal regulation of SDG2 and JMJ14 by circadian clock oscillators orchestrates histone modification rhythms in Arabidopsis. Genome Biol 20, 170.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spensley, M., Kim, J.Y., Picot, E., Reid, J., Ott, S., Helliwell, C., and Carre, I.A. (2009). Evolutionarily conserved regulatory motifs in the promoter of the Arabidopsis clock gene LATE ELONGATED HYPOCOTYL. Plant Cell 21, 2606–2623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spoel, S.H., and van Ooijen, G. (2014). Circadian redox signaling in plant immunity and abiotic stress. Antioxid Redox Signal 20, 3024–3039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steed, G., Ramirez, D.C., Hannah, M.A., and Webb, A.A.R. (2021). Chronoculture, harnessing the circadian clock to improve crop yield and sustainability. Science 372.

  • Sun, Y., Shi, Y., Liu, G., Yao, F., Zhang, Y., Yang, C., Guo, H., Liu, X., Jin, C., and Luo, J. (2020). Natural variation in the OsbZIP18 promoter contributes to branched-chain amino acid levels in rice. New Phytol 228, 1548–1558.

    Article  CAS  PubMed  Google Scholar 

  • Uhrig, R.G., Schläpfer, P., Roschitzki, B., Hirsch-Hoffmann, M., and Gruissem, W. (2019). Diurnal changes in concerted plant protein phosphorylation and acetylation in Arabidopsis organs and seedlings. Plant J 99, 176–194.

    Article  CAS  PubMed  Google Scholar 

  • Vogel, C., and Marcotte, E.M. (2012). Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet 13, 227–232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, F., Han, T., Song, Q., Ye, W., Song, X., Chu, J., Li, J., and Chen, Z.J. (2020). The rice circadian clock regulates tiller growth and panicle development through strigolactone signaling and sugar sensing. Plant Cell 32, 3124–3138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, W., Barnaby, J.Y., Tada, Y., Li, H., Tör, M., Caldelari, D., Lee, D., Fu, X.D., and Dong, X. (2011). Timing of plant immune responses by a central circadian regulator. Nature 470, 110–114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webb, A.A.R., Seki, M., Satake, A., and Caldana, C. (2019). Continuous dynamic adjustment of the plant circadian oscillator. Nat Commun 10, 550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, W., Yang, R., Li, M., Xing, Z., Yang, W., Chen, G., Guo, H., Gong, X., Du, Z., Zhang, Z., et al. (2011). Transcriptome phase distribution analysis reveals diurnal regulated biological processes and key pathways in rice flag leaves and seedling leaves. PLoS ONE 6, e17613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, F., Guo, H., Huang, J., Yang, C., Li, Y., Wang, X., Qu, L., Liu, X., and Luo, J. (2020). A UV-B-responsive glycosyltransferase, OsUGT706C2, modulates flavonoid metabolism in rice. Sci China Life Sci 63, 1037–1052.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, N., Meng, Y., Li, X., Zhou, Y., Ma, L., Fu, L., Schwarzländer, M., Liu, H., and Xiong, Y. (2019). Metabolite-mediated TOR signaling regulates the circadian clock in Arabidopsis. Proc Natl Acad Sci USA 116, 25395–25397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao, Z., Zhang, Z., Ding, Z., Meng, H., Shen, R., Tang, H., Liu, Y.G., and Chen, L. (2020). Public-transcriptome-database-assisted selection and validation of reliable reference genes for qRT-PCR in rice. Sci China Life Sci 63, 92–101.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, Z., Dang, Y., Zhou, M., Li, L., Yu, C.H., Fu, J., Chen, S., and Liu, Y. (2016). Codon usage is an important determinant of gene expression levels largely through its effects on transcription. Proc Natl Acad Sci USA 113, E6117–E6125.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zvonic, S., Floyd, Z.E., Mynatt, R.L., and Gimble, J.M. (2007). Circadian rhythms and the regulation of metabolic tissue function and energy homeostasis. Obesity 15, 539–543.

    Article  CAS  PubMed  Google Scholar 

  • Zwighaft, Z., Aviram, R., Shalev, M., Rousso-Noori, L., Kraut-Cohen, J., Golik, M., Brandis, A., Reinke, H., Aharoni, A., Kahana, C., et al. (2015). Circadian clock control by polyamine levels through a mechanism that declines with age. Cell Metab 22, 874–885.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Hainan Major Science and Technology Project (ZDKJ202002), the State Key Program of National Natural Science Foundation of China (31530052), the Key Research and Development Program of Hainan (ZDYF2020066), the Hainan Academician Innovation Platform (HD-YSZX-202003 and HD-YSZX-202004), and the Hainan University Startup Fund (KYQD(ZR)1866).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Luo.

Additional information

Compliance and ethics

The author(s) declare that they have no conflict of interest.

Electronic supplementary material

11427_2021_2064_MOESM1_ESM.pdf

Integration of rhythmic metabolome and transcriptome provides insight into the transmission of rhythm fluctuations and temporal diversity of metabolism in rice

11427_2021_2064_MOESM2_ESM.xls

Table S1. The scheduled MRM transitions for widely targeted metabolite analysis in leaf of rice (Oryza sativa L.) varieties.

Table S2. The rhythm of metabolites and log2-transformed relative content in four rice accessions.

Table S3. The KEGG enrichment of CRMs in four rice accessions.

Table S4. The rhythm of genes and FPKM of RNA-seq of four rice accessions.

Table S5. KEGG enrichment of CRGs in four rice accessions.

Table S6. KEGG enrichment of rhythmic genes in the rhythm module.

Table S7. Positive correlated rhythmic metabolites corresponding to gene modules

Table S8. Temporal correlation of CRMs among different rice accessions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Liu, C., Chen, Q. et al. Integration of rhythmic metabolome and transcriptome provides insights into the transmission of rhythmic fluctuations and temporal diversity of metabolism in rice. Sci. China Life Sci. 65, 1794–1810 (2022). https://doi.org/10.1007/s11427-021-2064-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-021-2064-7

Keywords

Navigation