Skip to main content
Log in

Dynamical influence of the Madden-Julian oscillation on the Northern Hemisphere mesosphere during the boreal winter

  • Research Paper
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

This study first investigates the effect of the Madden-Julian Oscillation (MJO) on the Northern Hemisphere (NH) mesosphere. Both observations and simulations suggest significant cooling in the NH polar mesosphere approximately 35 days after MJO phase 4 (P4), which lags the MJO-induced perturbation in the upper stratosphere by 10 days. The enhanced planetary waves (PWs) propagate upward and result in wavenumber-1 pattern temperature anomalies in the mesosphere lagging MJO P4 by 25 days. The anomalous PWs also lead to the weaker eastward zonal wind in the upper stratosphere and lower mesosphere lagging MJO P4 by 30 days. Simultaneously, the weaker westerlies result in weaker climatological westward gravity waves (GWs) in the mesosphere due to critical-level filtering. The mesosphere meridional circulation is suppressed due to both anomalous PWs and GWs, and this suppression causes polar mesospheric cooling lagging MJO P4 by 35 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander S P, Klekociuk A R, Murphy D J. 2011. Rayleigh lidar observations of gravity wave activity in the winter upper stratosphere and lower mesosphere above Davis, Antarctica (69°S, 78°E). J Geophys Res, 116: D13109

    Article  Google Scholar 

  • Andrews D G, Leovy C B, Holton J R. 1987. Middle Atmosphere Dynamics. London: Academic Press

    Google Scholar 

  • Carvalho L M V, Jones C, Ambrizzi T. 2005. Opposite phases of the Antarctic Oscillation and relationships with intraseasonal to inter-annual activity in the tropics during the austral summer. J Clim, 18: 702–718

    Article  Google Scholar 

  • Cassou C. 2008. Intraseasonal interaction between the Madden-Julian oscillation and the North Atlantic Oscillation. Nature, 455: 523–527

    Article  Google Scholar 

  • Eckermann S D, Rajopadhyaya D K, Vincent R A. 1997. Intraseasonal wind variability in the equatorial mesosphere and lower thermosphere: Long-term observations from the central Pacific. J Atmos Sol-Terr Phys, 59: 603–627

    Article  Google Scholar 

  • Fritts D C, Alexander M J. 2003. Gravity wave dynamics and effects in the middle atmosphere. Rev Geophys, 41: 1003

    Article  Google Scholar 

  • Garcia R R, Marsh D R, Kinnison D E, Boville B A, Sassi F. 2007. Simulation of secular trends in the middle atmosphere, 1950–2003. J Geophys Res, 112: D09301

    Google Scholar 

  • Garfinkel C I, Hartmann D L. 2007. Effects of the El Niño-Southern Oscillation and the quasi-biennial oscillation on polar temperatures in the stratosphere. J Geophys Res, 112: D19112

    Article  Google Scholar 

  • Garfinkel C I, Hartmann D L. 2008. Different ENSO teleconnections and their effects on the stratospheric polar vortex. J Geophys Res, 113: D18114

    Article  Google Scholar 

  • Garfinkel C I, Feldstein S B, Waugh D W, Yoo C, Lee S. 2012. Observed connection between stratospheric sudden warmings and the Madden-Julian Oscillation. Geophys Res Lett, 39: L18807

    Article  Google Scholar 

  • Garfinkel C I, Benedict J J, Maloney E D. 2014. Impact of the MJO on the boreal winter extratropical circulation. Geophys Res Lett, 41: 6055–6062

    Article  Google Scholar 

  • Garfinkel C I, Schwartz C. 2017. MJO-related tropical convection anomalies lead to more accurate stratospheric vortex variability in subseasonal forecast models. Geophys Res Lett, 44:10,054

    Google Scholar 

  • Gelaro R, McCarty W, Suárez M J, Todling R, Molod A, Takacs L, Randles C A, Darmenov A, Bosilovich M G, Reichle R, Wargan K, Coy L, Cullather R, Draper C, Akella S, Buchard V, Conaty A, da Silva A M, Gu W, Kim G K, Koster R, Lucchesi R, Merkova D, Nielsen J E, Partyka G, Pawson S, Putman W, Rienecker M, Schubert S D, Sienkiewicz M, Zhao B. 2017. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J Clim, 30: 5419–5454

    Article  Google Scholar 

  • Gerber E P, Baldwin M P, Akiyoshi H, Austin J, Bekki S, Braesicke P, Butchart N, Chipperfield M, Dameris M, Dhomse S, Frith S M, Garcia R R, Garny H, Gettelman A, Hardiman S C, Karpechko A, Marchand M, Morgenstern O, Nielsen J E, Pawson S, Peter T, Plummer D A, Pyle J A, Rozanov E, Scinocca J F, Shepherd T G, Smale D. 2010. Stratosphere-troposphere coupling and annular mode variability in chemistry-climate models. J Geophys Res, 115: D00M06

    Google Scholar 

  • Hoskins B J, Karoly D J. 1981. The steady linear response of a spherical atmosphere to thermal and orographic forcing. J Atmos Sci, 38: 1179–1196

    Article  Google Scholar 

  • Hoskins B J, Ambrizzi T. 1993. Rossby wave propagation on a realistic longitudinally varying flow. J Atmos Sci, 50: 1661–1671

    Article  Google Scholar 

  • Hurrell J W, Holland M M, Gent P R, Ghan S, Kay J E, Kushner P J, Lamarque J F, Large W G, Lawrence D, Lindsay K, Lipscomb W H, Long M C, Mahowald N, Marsh D R, Neale R B, Rasch P, Vavrus S, Vertenstein M, Bader D, Collins W D, Hack J J, Kiehl J, Marshall S. 2013. The community earth system model: A framework for collaborative research. Bull Am Meteorol Soc, 94: 1339–1360

    Article  Google Scholar 

  • Isoda F, Tsuda T, Nakamura T, Vincent R A, Reid I M, Achmad E, Sadewo A, Nuryanto A. 2004. Intraseasonal oscillations of the zonal wind near the mesopause observed with medium-frequency and meteor radars in the tropics. J Geophys Res, 109: D21108

    Google Scholar 

  • Jin F, Hoskins B J. 1995. The direct response to tropical heating in a baroclinic atmosphere. J Atmos Sci, 52: 307–319

    Article  Google Scholar 

  • Johnson N C, Feldstein S B. 2010. The continuum of North Pacific sea level pressure patterns: Intraseasonal, interannual, and interdecadal variability. J Clim, 23: 851–867

    Article  Google Scholar 

  • Kunz A, Pan L L, Konopka P, Kinnison D E, Tilmes S. 2011. Chemical and dynamical discontinuity at the extratropical tropopause based on START08 and WACCM analyses. J Geophys Res, 116: D24302

    Google Scholar 

  • Lau W K M, Zhou Y P. 2012. Observed recent trends in tropical cyclone rainfall over the North Atlantic and the North Pacific. J Geophys Res, 117: D03104

    Google Scholar 

  • L’Heureux M L, Higgins R W. 2008. Boreal winter links between the Madden-Julian oscillation and the Arctic Oscillation. J Clim, 21: 3040–3050

    Article  Google Scholar 

  • Li T, Calvo N, Yue J, Dou X, Russell Iii J M, Mlynczak M G, She C Y, Xue X. 2013. Influence of El Niño-Southern Oscillation in the mesosphere. Geophys Res Lett, 40: 3292–3296

    Article  Google Scholar 

  • Li T, Calvo N, Yue J, Russell James M. I, Smith A K, Mlynczak M G, Chandran A, Dou X, Liu A Z. 2016. Southern hemisphere summer mesopause responses to El Niño-Southern Oscillation. J Clim, 29: 6319–6328

    Article  Google Scholar 

  • Lin H, Brunet G, Derome J. 2009. An observed connection between the North Atlantic Oscillation and the Madden-Julian oscillation. J Clim, 22: 364–380

    Article  Google Scholar 

  • Liu X, Yue J, Xu J, Yuan W, Russell III J M, Hervig M E. 2015. Five-day waves in polar stratosphere and mesosphere temperature and mesospheric ice water measured by SOFIE/AIM. J Geophys Res-Atmos, 120: 3872–3887

    Article  Google Scholar 

  • Madden R A, Julian P R. 1971. Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J Atmos Sci, 28: 702–708

    Article  Google Scholar 

  • Madden R A, Julian P R. 1972. Description of global-scale circulation cells in the tropics with a 40–50 day period. J Atmos Sci, 29: 1109–1123

    Article  Google Scholar 

  • Marsh D R, Mills M J, Kinnison D E, Lamarque J F, Calvo N, Polvani L M. 2013. Climate Change from 1850 to 2005 Simulated in CESM1 (WACCM). J Clim, 26: 7372–7391

    Article  Google Scholar 

  • Moon J Y, Wang B, Ha K J. 2011. ENSO regulation of MJO teleconnection. Clim Dyn, 37: 1133–1149

    Article  Google Scholar 

  • Mori M, Watanabe M. 2008. The growth and triggering mechanisms of the PNA: A MJO-PNA coherence. J Meteorol Soc Jpn, 86: 213–236

    Article  Google Scholar 

  • Moss A C, Wright C J, Mitchell N J. 2016. Does the Madden-Julian Oscillation modulate stratospheric gravity waves? Geophys Res Lett, 43: 3973–3981

    Article  Google Scholar 

  • Murphy D J, Alexander S P, Vincent R A. 2012. Interhemispheric dynamical coupling to the southern mesosphere and lower thermosphere. J Geophys Res, 117: D08114

    Google Scholar 

  • Pancheva D, Mukhtarov P, Mitchell N J, Merzlyakov E, Smith A K, Andonov B, Singer W, Hocking W, Meek C, Manson A, Murayama Y. 2008. Planetary waves in coupling the stratosphere and mesosphere during the major stratospheric warming in 2003/2004. J Geophys Res, 113: D12105

    Article  Google Scholar 

  • Sardeshmukh P D, Hoskins B J. 1988. The generation of global rotational flow by steady idealized tropical divergence. J Atmos Sci, 45: 1228–1251

    Article  Google Scholar 

  • Schwartz C, Garfinkel C I. 2017. Relative roles of the MJO and stratospheric variability in North Atlantic and European winter climate. J Geophys Res-Atmos, 122: 4184–4201

    Article  Google Scholar 

  • Schwartz M J, Lambert A, Manney G L, Read W G, Livesey N J, Froidevaux L, Ao C O, Bernath P F, Boone C D, Cofield R E, Daffer W H, Drouin B J, Fetzer E J, Fuller R A, Jarnot R F, Jiang J H, Jiang Y B, Knosp B W, Krüger K, Li J L F, Mlynczak M G, Pawson S, Russell Iii J M, Santee M L, Snyder W V, Stek P C, Thurstans R P, Tompkins A M, Wagner P A, Walker K A, Waters J W, Wu D L. 2008. Validation of the Aura Microwave Limb Sounder temperature and geopotential height measurements. J Geophys Res, 113: D15S11

    Google Scholar 

  • Smith A K, Pedatella N M, Marsh D R, Matsuo T. 2017. On the dynamical control of the mesosphere-lower thermosphere by the lower and middle atmosphere. J Atmos Sci, 74: 933–947

    Article  Google Scholar 

  • Son S W, Lim Y, Yoo C, Hendon H H, Kim J. 2017. Stratospheric control of the Madden-Julian oscillation. J Clim, 30: 1909–1922

    Article  Google Scholar 

  • Sridharan S, Tsuda T, Gurubaran S. 2007. Radar observations of long-term variability of mesosphere and lower thermosphere winds over Tirunelveli (8.7°N, 77.8°E). J Geophys Res, 112: D23105

    Article  Google Scholar 

  • Tang Y, Yu B. 2008. MJO and its relationship to ENSO. J Geophys Res, 113: D14106

    Article  Google Scholar 

  • Trenberth K E, Branstator G W, Karoly D, Kumar A, Lau N C, Ropelewski C. 1998. Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J Geophys Res, 103: 14291–14324

    Article  Google Scholar 

  • Vincent R A. 1987. Planetary and gravity waves in the mesosphere and lower thermosphere. Adv Space Res, 7: 163–169

    Article  Google Scholar 

  • Vitart F, Molteni F. 2010. Simulation of the Madden- Julian Oscillation and its teleconnections in the ECMWF forecast system. Q J R Meteorol Soc, 136: 842–855

    Article  Google Scholar 

  • Waliser D E, Lau K M, Stern W, Jones C. 2003. Potential predictability of the Madden-Julian oscillation. Bull Am Meteorol Soc, 84: 33–50

    Article  Google Scholar 

  • Wheeler M C, Hendon H H. 2004. An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon Weather Rev, 132: 1917–1932

    Article  Google Scholar 

  • Yang C, Li T Dou X, Xue X. 2015. Signal of central Pacific El Niño in the Southern Hemispheric stratosphere during austral spring. J Geophys Res-Atmos, 120:11,438

    Article  Google Scholar 

  • Yang C, Li T, Smith A K, Dou X. 2017. The response of the Southern Hemisphere middle atmosphere to the Madden-Julian oscillation during austral winter using the specified-dynamics whole atmosphere community climate model. J Clim, 30: 8317–8333

    Article  Google Scholar 

  • Yang C, Li T, Xue X, Gu S Y, Yu C, Dou X. 2019. Response of the northern stratosphere to the Madden-Julian oscillation during boreal Winter. J Geophys Res-Atmos, 124: 5314–5331

    Article  Google Scholar 

  • Yi W, Xue X H, Chen J S, Chen T D, Li N. 2019. Quasi-90-day oscillation observed in the MLT region at low latitudes from the Kunming meteor radar and SABER. Earth Planet Phys, 3: 136–146

    Article  Google Scholar 

  • Yoo C, Son S W. 2016. Modulation of the boreal wintertime Madden-Julian oscillation by the stratospheric quasi-biennial oscillation. Geophys Res Lett, 43: 1392–1398

    Article  Google Scholar 

  • Žagar N, Franzke C L E. 2015. Systematic decomposition of the Madden-Julian Oscillation into balanced and inertia-gravity components. Geophys Res Lett, 42: 6829–6835

    Article  Google Scholar 

  • Zhang C. 2005. Madden-Julian oscillation. Rev Geophys, 43: RG2003

    Google Scholar 

  • Zhang C. 2013. Madden-Julian oscillation: Bridging weather and climate. Bull Am Meteorol Soc, 94: 1849–1870

    Article  Google Scholar 

  • Zhou S, Miller A J. 2005. The interaction of the Madden-Julian oscillation and the Arctic Oscillation. J Clim, 18: 143–159

    Article  Google Scholar 

  • Zülicke C, Becker E. 2013. The structure of the mesosphere during sudden stratospheric warmings in a global circulation model. J Geophys Res-Atmos, 118: 2255–2271

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the MLS team for making the temperature data available. We thank for the WACCM team to provide the SD-WACCM for this study. This work was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB 41000000), the National Natural Science Foundation of China (Grant Nos. 41874180, 41974175, 41831071, and 41874181), and the Open Research Project of Large Research Infrastructures of CAS — “Study on the interaction between low/mid-latitude atmosphere and ionosphere based on the Chinese Meridian Project.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengyun Yang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, C., Yang, C. & Li, T. Dynamical influence of the Madden-Julian oscillation on the Northern Hemisphere mesosphere during the boreal winter. Sci. China Earth Sci. 64, 1254–1266 (2021). https://doi.org/10.1007/s11430-020-9779-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-020-9779-2

Keywords

Navigation