Skip to main content
Log in

Advances in narrow linewidth diode lasers

  • Review
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

The smart travel era has come and requirement for high precision lidar detection technology is higher and higher. The new solid-state lidars can meet the requirements of intelligent cars in the future, with the advantages of high resolution, strong anti-active jamming ability, small volume, light weight, low cost and so on. The narrow linewidth diode laser is the perfect light source of solid-state lidars. The progress and development of narrow linewidth diode laser technique can greatly improve the application of solidstate lidar. The technology and development status of narrow linewidth diode lasers has been described detailly in the paper. And the design ideas, key fabrication technologies and optical characteristics of various narrow linewidth diode lasers have been analyzed and discussed as well. Finally, the developments of narrow linewidth diode lasers are prospected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bjelica M, Witzigmann B. Optimization of 1.55 µm quantum dot edge-emitting lasers for narrow spectral linewidth. Opt Quant Electron, 2016, 48: 110

    Article  Google Scholar 

  2. Virtanen H, Uusitalo T, Karjalainen M, et al. Narrow-linewidth 780-nm DFB lasers fabricated using nanoimprint lithography. IEEE Photon Technol Lett, 2018, 30: 51–54

    Article  Google Scholar 

  3. Lewoczko-Adamczyk W, Pyrlik C, Häger J, et al. Ultra-narrow linewidth DFB-laser with optical feedback from a monolithic confocal Fabry-Perot cavity. Opt Express, 2015, 23: 9705–9709

    Article  Google Scholar 

  4. Liu J G, Wang S L, Chen W. Narrow linewidth distributed-feedback laser with low relative intensity noise. In: Proceedings of the 14th International Conference on Optical Communications and Networks, Nanjing, 2015. 1–3

    Google Scholar 

  5. Zhao Y, Li Y, Wang Q, et al. 100-Hz linewidth diode laser with external optical feedback. IEEE Photon Technol Lett, 2012, 24: 1795–1798

    Article  Google Scholar 

  6. Jia P, Qin L, Chen Y Y, et al. Broad-stripe single longitudinal mode laser based on metal slots. Opt Commun, 2016, 365: 215–219

    Article  Google Scholar 

  7. Chen Y Y, Jia P, Zhang J, et al. Gain-coupled distributed feedback laser based on periodic surface anode canals. Appl Opt, 2015, 54: 8863–8866

    Article  Google Scholar 

  8. Klehr A, Schwertfeger S, Wenzel H, et al. Dynamics of high power gain switched DFB RW laser under high current pulse excitation on a nanosecond time scale. In: Proceedings of SPIE-International Society for Optics and Photonics (OPTO), San Francisco, 2013. 86401N

    Google Scholar 

  9. Hai Y N, Zhou Y G, Tian K, et al. Research progress of horizontal cavity surface emitting semiconductor lasers. Chin Opt, 2017, 10: 194–206

    Article  Google Scholar 

  10. Kogelnik H, Shank C V. Erratum: stimulated emission in a periodic structure. Appl Phys Lett, 1971, 18: 408

    Article  Google Scholar 

  11. Nakamura M, Yariv A, Yen H W, et al. Optically pumped GaAs surface laser with corrugation feedback. Appl Phys Lett, 1973, 22: 515–516

    Article  Google Scholar 

  12. Klehr A, Bugge F, Erbert G, et al. High-power broad-area 808nm DFB lasers for pumping solid state laser. In: Proceedings of Conference on Novel In-Plane Semiconductor Lasers V, San Jose, 2006. 61330F

    Google Scholar 

  13. Nguyen T P, Schiemangk M, Spießberger S, et al. Optimization of 780 nm DFB diode lasers for high-power narrow linewidth emission. Appl Phys B, 2012, 108: 767–771

    Article  Google Scholar 

  14. Brox O, Bugge F, Mogilatenko A, et al. Small linewidths 76x nm DFB-laser diodes with optimised two-step epitaxial gratings. In: Proceedings of SPIE-International Society for Optical Engineering, Brussels, 2014. 9134

    Google Scholar 

  15. Cayron C, Tran M, Robert Y, et al. Very narrow linewidth of high power DFB laser diode for Cs pumping. In: Proceedings of 2011 Conference on Lasers and Electro-Optics Europe, Munich, 2011. 1–2

    Google Scholar 

  16. Cayron C, Tran M, Robert Y, et al. High power distributed feedback and Fabry-Perot Al-free laser diodes at 780 nm for rubidium pumping. In: Proceedings of Conference on Novel In-Plane Semiconductor Lasers X, San Francisco, 2011. 79530A

    Google Scholar 

  17. Matthey R, Gruet F, Affolderbach C, et al. Development and spectral characterisation of ridge DFB laser diodes for Cs optical pumping at 894 nm. In: Proceedings of 2016 European Frequency and Time Forum (EFTF), Univ York, 2016. 1–4

    Google Scholar 

  18. Spießberger S, Schiemangk M, Wicht A, et al. Narrow linewidth DFB lasers emitting near a wavelength of 1064 nm. J Lightw Technol, 2010, 28: 2611–2616

    Article  Google Scholar 

  19. Faugeron M, Tran M, Parillaud O, et al. High-power tunable dilute mode DFB laser with low RIN and narrow linewidth. IEEE Photon Technol Lett, 2013, 25: 7–10

    Article  Google Scholar 

  20. Hou C C, Chen H M, Zhang J C, et al. Near-infrared and mid-infrared semiconductor broadband light emitters. Light Sci Appl, 2017, 7: 17170

    Article  Google Scholar 

  21. Dumitrescu M, Telkkala J, Karinen J, et al. Narrow-linewidth distributed feedback lasers with laterally-coupled ridge-waveguide surface gratings fabricated using nanoimprint lithography. In: Proceedings of Conference on Novel In-Plane Semiconductor Lasers X, San Francisco, 2011. 79530B

    Google Scholar 

  22. Hou L P, Haji M, Akbar J, et al. Narrow linewidth laterally coupled 1.55 µm AlGaInAs/InP distributed feedback lasers integrated with a curved tapered semiconductor optical amplifier. Opt Lett, 2012, 37: 4525–4527

    Article  Google Scholar 

  23. Dridi K, Benhsaien A, Akrout A, et al. Narrow-linewidth three-electrode regrowth-free semiconductor DFB lasers with uniform surface grating. In: Proceedings of Conference on Novel In-Plane Semiconductor Lasers XII, San Francisco, 2013. 864009

    Google Scholar 

  24. Dridi K, Benhsaien A, Zhang J, et al. Narrow linewidth 1550 nm corrugated ridge waveguide DFB lasers. IEEE Photon Technol Lett, 2014, 26: 1192–1195

    Article  Google Scholar 

  25. Dridi K, Benhsaien A, Zhang J, et al. Narrow linewidth two-electrode 1560 nm laterally coupled distributed feedback lasers with third-order surface etched gratings. Opt Express, 2014, 22: 19087–19097

    Article  Google Scholar 

  26. Duan J N, Huang H M, Lu Z G, et al. Narrow spectral linewidth in InAs/InP quantum dot distributed feedback lasers. Appl Phys Lett, 2018, 112: 121102

    Article  Google Scholar 

  27. Shi J X, Qin L, Liu Y, et al. Emission characteristics of surface second-order metal grating distributed feedback semiconductor lasers. Chin Sci Bull, 2012, 57: 2083–2086

    Article  Google Scholar 

  28. Yu H Y, Pan J Q, Shao Y B. 1.82-µm distributed feedback lasers with InGaAs/InGaAsP multiple-quantum wells for a H2O sensing system. Chin Opt Lett, 2013, 11: 031404–031407

    Article  Google Scholar 

  29. Zhai T, Tan S Y, Lu D, et al. High power 1060 nm distributed feedback semiconductor laser. Chin Phys Lett, 2014, 31: 024203

    Article  Google Scholar 

  30. Guo F, Zhang R K, Lu D, et al. 1.3-µm multi-wavelength DFB laser array fabricated by mocvd selective area growth. Opt Commun, 2014, 331: 165–168

    Article  Google Scholar 

  31. Spießberger S, Schiemangk M, Wicht A, et al. DBR laser diodes emitting near 1064 nm with a narrow intrinsic linewidth of 2 kHz. Appl Phys B, 2011, 104: 813–818

    Article  Google Scholar 

  32. Coleman J J, Dias N L, Reddy U, et al. Narrow spectral linewidth surface grating DBR diode lasers. In: Proceedings of the 23rd IEEE International Semiconductor Laser Conference (ISLC), San Diego, 2012. 173–174

    Google Scholar 

  33. Decker J, Crump P, Fricke J, et al. Narrow stripe broad area lasers with high order distributed feedback surface gratings. IEEE Photon Technol Lett, 2014, 26: 829–832

    Article  Google Scholar 

  34. Feise D, Blume G, Pohl J, et al. Sub-MHz linewidth of 633 nm diode lasers with internal surface DBR gratings. In: Proceedings of Conference on Novel In-Plane Semiconductor Lasers XII, San Francisco, 2013. 86400A

    Google Scholar 

  35. Paschke K, Pohl J, Feise D, et al. Properties of 62x nm red-emitting single-mode diode lasers. In: Proceedings of Conference on Novel In-Plane Semiconductor Lasers XIII, San Francisco, 2014. 90020A

    Google Scholar 

  36. Virtanen H, Aho A T, Viheriala J, et al. Spectral characteristics of narrow-linewidth high-power 1180 nm DBR laser with surface gratings. IEEE Photon Technol Lett, 2017, 29: 114–117

    Article  Google Scholar 

  37. Lee T P, Burrus C A, Wilt D P. Measured spectral linewidth of variable-gap cleaved-coupled-cavity lasers. Electron Lett, 1985, 21: 53–54

    Article  Google Scholar 

  38. Gruet F, Bandi T, Mileti G, et al. Development and spectral characterisation of Discrete Mode Laser Diodes (DMLDs) emitting at 780 nm for Rubidium atomic clocks. In: Proceedings of 2011 Conference on Lasers and Electro-optics Europe, Munich, 2011. 1–2

    Google Scholar 

  39. O’Carroll J, Phelan R, Kelly B, et al. Wide temperature range 0 < T < 85° narrow linewidth discrete mode laser diodes for coherent communications applications. Opt Express, 2011, 19: 90–95

    Article  Google Scholar 

  40. Phelan R, Gleeson M R, Byrne D C, et al. InGaP/AlGaInP quantum well discrete mode laser diode emitting at 689 nm. IEEE Photon Technol Lett, 2018, 30: 235–237

    Article  Google Scholar 

  41. Abdullaev A, Lu Q Y, Guo W H, et al. Linewidth characterization of integrable slotted single-mode lasers. IEEE Photon Technol Lett, 2014, 26: 2225–2228

    Article  Google Scholar 

  42. Yang H, Yang M Q, Zhao Y, et al. Butterfly packaged ultra-narrow linewidth single frequency teardrop laser diode. IEEE Photon Technol Lett, 2017, 29: 1537–1539

    Article  Google Scholar 

  43. Lu Q Y, Guo W H, Nawrocka M, et al. Single mode lasers based on slots suitable for photonic integration. Opt Express, 2011, 19: B140

    Article  Google Scholar 

  44. Zou L, Wang L, Yu T T, et al. Wavelength tunable laser based on distributed reflectors with deep submicron slots. In: Proceedings of Conference on Photonics North, Montreal, 2012. 84120O

    Google Scholar 

  45. Wang Y, Yang Y G, Zhang S, et al. Narrow linewidth single-mode slotted Fabry-Perot laser using deep etched trenches. IEEE Photon Technol Lett, 2012, 24: 1233–1235

    Article  Google Scholar 

  46. Yu T T, Zou L, Wang L, et al. Single-mode and wavelength tunable lasers based on deep-submicron slots fabricated by standard UV-lithography. Opt Express, 2012, 20: 16291–16299

    Article  Google Scholar 

  47. Mroziewicz B. External cavity wavelength tunable semiconductor lasers-a review. Opto-Electron Rev, 2008, 16: 347–366

    Article  Google Scholar 

  48. Britzger M, Khalaidovski A, Hemb B, et al. External-cavity diode laser in second-order Littrow configuration. Opt Lett, 2012, 37: 3117–3119

    Article  Google Scholar 

  49. Shin D K, Henson B M, Khakimov R I, et al. Widely tunable, narrow linewidth external-cavity gain chip laser for spectroscopy between 1.0–1.1 µm. Opt Express, 2016, 24: 27403–27414

    Article  Google Scholar 

  50. Bayrakli I. Frequency stabilization at the sub-kilohertz level of an external cavity diode laser. Appl Opt, 2016, 55: 2463–2466

    Article  Google Scholar 

  51. Bayrakli I. Investigation of double-mode operation and fast fine tuning properties of a grating-coupled external cavity diode laser configuration. Opt Laser Tech, 2017, 87: 7–10

    Article  Google Scholar 

  52. Wei F, Sun Y G, Chen D J, et al. Tunable external cavity diode laser with a PLZT electrooptic ceramic deflector. IEEE Photon Technol Lett, 2011, 23: 296–298

    Google Scholar 

  53. Chen W L, Yuan J, Qi X H, et al. Design of 780 nm external cavity semiconductor laser and higher harmonic frequency stabilization. Chin J Lasers, 2007, 34: 895–900

    Google Scholar 

  54. Ding D, Lv X Q, Chen X Y, et al. Tunable high-power blue external cavity semiconductor laser. Opt Laser Tech, 2017, 94: 1–5

    Article  Google Scholar 

  55. Li B, Gao J, Yu A L, et al. 500 mW tunable external cavity diode laser with narrow line-width emission in blue-violet region. Opt Laser Tech, 2017, 96: 176–179

    Article  Google Scholar 

  56. Chen D J, Fang Z J, Cai H W, et al. Polarization characteristics of an external cavity diode laser with littman-metcalf configuration. IEEE Photon Technol Lett, 2009, 21: 984–986

    Article  Google Scholar 

  57. Hieta T, Vainio M, Moser C, et al. External-cavity lasers based on a volume holographic grating at normal incidence for spectroscopy in the visible range. Opt Commun, 2009, 282: 3119–3123

    Article  Google Scholar 

  58. Luvsandamdin E, Spießberger S, Schiemangk M, et al. Development of narrow linewidth, micro-integrated extended cavity diode lasers for quantum optics experiments in space. Appl Phys B, 2013, 111: 255–260

    Article  Google Scholar 

  59. Christopher H, Arar B, Bawamia A, et al. Narrow linewidth micro-integrated high power diode laser module for deployment in space. In: Proceedings of IEEE International Conference on Space Optical Systems and Applications, Kinawa, 2017. 150–153

    Google Scholar 

  60. Numata K, Camp J, Krainak M A, et al. Performance of planar-waveguide external cavity laser for precision measurements. Opt Express, 2010, 18: 22781–22788

    Article  Google Scholar 

  61. Zhao Y, Peng Y, Yang T, et al. External cavity diode laser with kilohertz linewidth by a monolithic folded Fabry-Perot cavity optical feedback.Opt Lett, 2011, 36: 34–36

    Article  Google Scholar 

  62. Komljenovic T, Srinivasan S, Norberg E, et al. Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers. IEEE J Sel Topics Quantum Electron, 2015, 21: 1–9

    Article  Google Scholar 

  63. Stern B, Ji X C, Dutt A, et al. Compact narrow-linewidth integrated laser based on a low-loss silicon nitride ring resonator. Opt Lett, 2017, 42: 4541–4544

    Article  Google Scholar 

  64. Cendejas R A, Phillips M C, Myers T L, et al. Single-mode, narrow-linewidth external cavity quantum cascade laser through optical feedback from a partial-reflector. Opt Express, 2010, 18: 26037–26045

    Article  Google Scholar 

  65. Aoyama K, Yoshioka R, Yokota N, et al. Optical negative feedback for linewidth reduction of semiconductor lasers. IEEE Photon Technol Lett, 2015, 27: 340–343

    Article  Google Scholar 

  66. Aoyama K, Yokota N, Yasaka D H. 3-kHz spectral linewidth laser assembly with coherent optical negative feedback. IEEE Photon Technol Lett, 2018, 30: 277–280

    Article  Google Scholar 

  67. Wei F, Yang F, Zhang X, et al. Subkilohertz linewidth reduction of a DFB diode laser using self-injection locking with a fiber Bragg grating Fabry-Perot cavity. Opt Express, 2016, 24: 17406–17415

    Article  Google Scholar 

  68. Zhang L, Wei F, Sun G W, et al. Thermal tunable narrow linewidth external cavity laser with thermal enhanced FBG. IEEE Photon Technol Lett, 2017, 29: 385–388

    Article  Google Scholar 

  69. Yu L Q, Lu D, Pan B W, et al. Widely tunable narrow-linewidth lasers using self-injection DBR lasers. IEEE Photon Technol Lett, 2015, 27: 50–53

    Article  Google Scholar 

  70. Li Z S, Lu D, He Y M, et al. Improving the performance of narrow linewidth semiconductor laser through self-injection locking. In: Proceedings of the 30th Annual Conference of the IEEE-Photonics-Society (IPC), Orlando, 2017. 655–656

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Key R&D Program of China (Grant Nos. 2017YFB0405100, 2016YFE0126800), Chinese Academy of Sciences Frontier Science Key Research Project (Grant No. QYZDY-SSW-ZSC006), National Natural Science Foundation of China (Grant Nos. 61727822, 61674148, 11604328, 51672264), Science and Technology Development Project of Jilin Province (Grant Nos. 20160520017JH, 20170623024TC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Jia or Yongyi Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lang, X., Jia, P., Chen, Y. et al. Advances in narrow linewidth diode lasers. Sci. China Inf. Sci. 62, 61401 (2019). https://doi.org/10.1007/s11432-019-9870-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-019-9870-0

Keywords

Navigation