Skip to main content
Log in

Magnetic field annihilation and reconnection driven by femtosecond lasers in inhomogeneous plasma

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The process of fast magnetic reconnection driven by intense ultra-short laser pulses in underdense plasma is investigated by particle-in-cell simulations. In the wakefield of such laser pulses, quasi-static magnetic fields at a few mega-Gauss are generated due to nonvanishing cross product ∆(n /γ) × p. Excited in an inhomogeneous plasma of decreasing density, the quasi-static magnetic field structure is shown to drift quickly both in lateral and longitudinal directions. When two parallel-propagating laser pulses with close focal spot separation are used, such field drifts can develop into magnetic reconnection (annihilation) in their overlapping region, resulting in the conversion of magnetic energy to kinetic energy of particles. The reconnection rate is found to be much higher than the value obtained in the Hall magnetic reconnection model. Our work proposes a potential way to study magnetic reconnection-related physics with short-pulse lasers of terawatt peak power only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Yamada, Phys. Plasmas 14, 058102 (2007).

    Article  ADS  Google Scholar 

  2. Y. L. Ping, J. Y. Zhong, Z. M. Sheng, X. G. Wang, B. Liu, Y. T. Li, X. Q. Yan, X. T. He, J. Zhang, and G. Zhao, Phys. Rev. E 89, 031101 (2014).

    Article  ADS  Google Scholar 

  3. J. Zhong, Y. Li, X. Wang, J. Wang, Q. Dong, C. Xiao, S. Wang, X. Liu, L. Zhang, L. An, F. Wang, J. Zhu, Y. Gu, X. He, G. Zhao, and J. Zhang, Nat. Phys. 6, 984 (2010).

    Article  Google Scholar 

  4. E. N. Parker, J. Geophys. Res. 62, 509 (1957).

    Article  ADS  Google Scholar 

  5. J. B. Taylor, Rev. Mod. Phys. 58, 741 (1986).

    Article  ADS  Google Scholar 

  6. Q. L. Dong, S. J. Wang, Q. M. Lu, C. Huang, D. W. Yuan, X. Liu, X. X. Lin, Y. T. Li, H. G. Wei, J. Y. Zhong, J. R. Shi, S. E. Jiang, Y. K. Ding, B. B. Jiang, K. Du, X. T. He, M. Y. Yu, C. S. Liu, S. Wang, Y. J. Tang, J. Q. Zhu, G. Zhao, Z. M. Sheng, and J. Zhang, Phys. Rev. Lett. 108, 215001 (2012), arXiv: 1203.4036.

    Article  ADS  Google Scholar 

  7. P. M. Nilson, L. Willingale, M. C. Kaluza, C. Kamperidis, S. Minardi, M. S. Wei, P. Fernandes, M. Notley, S. Bandyopadhyay, M. Sherlock, R. J. Kingham, M. Tatarakis, Z. Najmudin, W. Rozmus, R. G. Evans, M. G. Haines, A. E. Dangor, and K. Krushelnick, Phys. Plasmas 15, 092701 (2008).

    Article  ADS  Google Scholar 

  8. X. X. Pei, J. Y. Zhong, Y. Sakawa, Z. Zhang, K. Zhang, H. G. Wei, Y. T. Li, Y. F. Li, B. J. Zhu, T. Sano, Y. Hara, S. Kondo, S. Fujioka, G. Y. Liang, F. L. Wang, and G. Zhao, Phys. Plasmas 23, 032125 (2016).

    Article  ADS  Google Scholar 

  9. R. L. Richard, R. D. Sydora, and M. Ashour-Abdalla, Phys. Fluids B-Plasma Phys. 2, 488 (1990).

    Article  Google Scholar 

  10. W. Fox, A. Bhattacharjee, and K. Germaschewski, Phys. Plasmas 19, 056309 (2012).

    Article  ADS  Google Scholar 

  11. C. K. Li, F. H. Séguin, J. A. Frenje, J. R. Rygg, R. D. Petrasso, R. P. J. Town, O. L. Landen, J. P. Knauer, and V. A. Smalyuk, Phys. Rev. Lett. 99, 055001 (2007).

    Article  ADS  Google Scholar 

  12. M. G. Haines, Phys. Rev. Lett. 78, 254 (1997).

    Article  ADS  Google Scholar 

  13. X. G. Wang, C. J. Xiao, Z. Y. Pu, and J. Q. Wang, Chin. Sci. Bull. 57, 1369 (2012).

    Article  Google Scholar 

  14. K. Huang, C. Huang, Q. Dong, Q. Lu, S. Lu, Z. Sheng, S. Wang, and J. Zhang, Phys. Plasmas 24, 041406 (2017).

    Article  ADS  Google Scholar 

  15. S. Lu, Q. Lu, C. Huang, Q. Dong, J. Zhu, Z. Sheng, S. Wang, and J. Zhang, New J. Phys. 16, 083021 (2014).

    Article  ADS  Google Scholar 

  16. S. Lu, Q. Lu, F. Guo, Z. Sheng, H. Wang, and S. Wang, New J. Phys. 18, 013051 (2016).

    Article  ADS  Google Scholar 

  17. Y. J. Gu, O. Klimo, D. Kumar, S. V. Bulanov, T. Z. Esirkepov, S. Weber, and G. Korn, Phys. Plasmas 22, 103113 (2015).

    Article  ADS  Google Scholar 

  18. Y. J. Gu, Q. Yu, O. Klimo, T. Z. Esirkepov, S. V. Bulanov, S. Weber, and G. Korn, High Pow Laser Sci. Eng. 4, e19 (2016).

    Article  Google Scholar 

  19. Y. Q. Cui, Z. M. Sheng, Q. M. Lu, Y. T. Li, and J. Zhang, Sci. China-Phys. Mech. Astron. 58, 105201 (2015), arXiv: 1506.00049.

    Article  ADS  Google Scholar 

  20. S. Mondal, V. Narayanan, W. J. Ding, A. D. Lad, B. Hao, S. Ahmad, W. M. Wang, Z. M. Sheng, S. Sengupta, P. Kaw, A. Das, and G. R. Kumar, Proc. Natl. Acad. Sci. 109, 8011 (2012).

    Article  ADS  Google Scholar 

  21. Z. M. Sheng, J. Meyer-Ter-Vehn, and A. Pukhov, Phys. Plasmas 5, 3764 (1998).

    Article  ADS  Google Scholar 

  22. S. K. Yadav, A. Das, and P. Kaw, Phys. Plasmas 15, 062308 (2008), arXiv: 0804.3934.

    Article  ADS  Google Scholar 

  23. J. Nycander, and M. B. Isichenko, Phys. Fluids B-Plasma Phys. 2, 2042 (1990).

    Article  Google Scholar 

  24. T. Tajima, and J. M. Dawson, Phys. Rev. Lett. 43, 267 (1979).

    Article  ADS  Google Scholar 

  25. Z. M. Sheng, K. Mima, Y. Sentoku, K. Nishihara, and J. Zhang, Phys. Plasmas 9, 3147 (2002).

    Article  ADS  Google Scholar 

  26. R. A. Fonseca, L. O. Silva, F. S. Tsung, V. K. Decyk, W. Lu, C. Ren, W. B. Mori, S. Deng, S. Lee, T. Katsouleas, and J. C. Adam, in Lecture Notes in Computer Science: Proceedings of International Conference on Computational Science (ICCS) 2002 (Springer, Berlin, Heidelberg), 2331: 342–351.

    MATH  Google Scholar 

  27. F. F. Chen, Introduction to Plasma Physics and Controlled Fusion, 2nd ed (Plenum Press, New York, 1984).

    Book  Google Scholar 

  28. Q. M. Lu, R. S. Wang, J. L. Xie, C. Huang, S. Lu, and S. Wang, Chin. Sci. Bull. 56, 1174 (2011).

    Article  Google Scholar 

  29. J. Guo, Chin. Sci. Bull. 54, 456 (2009).

    Google Scholar 

  30. H. Che, J. F. Drake, and M. Swisdak, Nature 474, 184 (2011).

    Article  ADS  Google Scholar 

  31. J. D. Huba, and L. I. Rudakov, Phys. Rev. Lett. 93, 175003 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhengMing Sheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Li, F., Chen, M. et al. Magnetic field annihilation and reconnection driven by femtosecond lasers in inhomogeneous plasma. Sci. China Phys. Mech. Astron. 60, 115211 (2017). https://doi.org/10.1007/s11433-017-9086-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-017-9086-9

Keywords

Navigation