Skip to main content
Log in

Single-electron pumping in a ZnO single-nanobelt quantum dot transistor

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Diluted magnetic semiconductors (DMSs) have traditionally been employed to implement spin-based quantum computing and quantum information processing. However, their low Curie temperature is a major hurdle in their use in this field, which creates the necessity for wide bandgap DMSs operating at room temperature. In view of this, a single-electron transistor (SET) with a global back-gate was built using a wide bandgap ZnO nanobelt (NB). Clear Coulomb oscillations were observed at 4.2 K. The periodicity of the Coulomb diamonds indicates that the Coulomb oscillations arise from single quantum dots of uniform size, whereas quasi-periodic Coulomb diamonds correspond to the contribution of multi-dots present in the ZnO NB. By applying an AC signal to the global back-gate across a Coulomb peak with varying frequencies, single-electron pumping was observed; the increase in current was equal to the production of electron charge and frequency. The current accuracy of about 1% for both single- and double-electron pumping was achieved at a high frequency of 25 MHz. This accurate single-electron pumping makes the ZnO NB SET suitable for single-spin injection and detection, which has great potential for applications in quantum information technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Dietl, Nat. Mater. 9, 965 (2010).

    ADS  Google Scholar 

  2. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019 (2000).

    ADS  Google Scholar 

  3. J. Tang, C. Y. Wang, L. T. Chang, Y. Fan, T. Nie, M. Chan, W. Jiang, Y. T. Chen, H. J. Yang, H. Y. Tuan, L. J. Chen, and K. L. Wang, Nano Lett. 13, 4036 (2013).

    ADS  Google Scholar 

  4. Y. Ohno, D. K. Young, B. Beschoten, F. Matsukura, H. Ohno, and D. D. Awschalom, Nature 402, 790 (1999).

    ADS  Google Scholar 

  5. X. Xu, A. C. Irvine, Y. Yang, X. Zhang, and D. A. Williams, Phys. Rev. B 82, 195309 (2010).

    ADS  Google Scholar 

  6. X. F. Ji, Z. Xu, S. Cao, K. S. Qiu, J. Tang, X. T. Zhang, and X. L. Xu, Chin. Phys. Lett. 31, 067303 (2014).

    ADS  Google Scholar 

  7. R. Araneo, F. Bini, A. Rinaldi, A. Notargiacomo, M. Pea, and S. Celozzi, Nanotechnology 26, 265402 (2015).

    ADS  Google Scholar 

  8. Z. L. Wang, and J. Song, Science 312, 242 (2006).

    ADS  Google Scholar 

  9. Z. Li, X. Zhang, and G. Li, Phys. Chem. Chem. Phys. 16, 5475 (2014).

    Google Scholar 

  10. Y. Hu, Y. Chang, P. Fei, R. L. Snyder, and Z. L. Wang, ACS Nano 4, 1234 (2010).

    Google Scholar 

  11. J. Bao, M. A. Zimmler, F. Capasso, X. Wang, and Z. F. Ren, Nano Lett. 6, 1719 (2006).

    ADS  Google Scholar 

  12. Z. Dai, A. Nurbawono, A. Zhang, M. Zhou, Y. P. Feng, G. W. Ho, and C. Zhang, J. Chem. Phys. 134, 104706 (2011).

    ADS  Google Scholar 

  13. J. Song, J. Zhou, and Z. L. Wang, Nano Lett. 6, 1656 (2006).

    ADS  Google Scholar 

  14. N. Janssen, K. M. Whitaker, D. R. Gamelin, and R. Bratschitsch, Nano Lett. 8, 1991 (2008).

    ADS  Google Scholar 

  15. V. Modepalli, M. J. Jin, J. Park, J. Jo, J. H. Kim, J. M. Baik, C. Seo, J. Kim, and J. W. Yoo, ACS Nano 10, 4618 (2016).

    Google Scholar 

  16. A. Singhal, S. N. Achary, J. Manjanna, S. Chatterjee, P. Ayyub, and A. K. Tyagi, J. Phys. Chem. C 114, 3422 (2010).

    Google Scholar 

  17. M. A. Laakso, T. Ojanen, and T. T. Heikkilä, Phys. Rev. B 77, 233303 (2008).

    ADS  Google Scholar 

  18. S. Kano, Y. Azuma, K. Maeda, D. Tanaka, M. Sakamoto, T. Teranishi, L. W. Smith, C. G. Smith, and Y. Majima, ACS Nano 6, 9972 (2012).

    Google Scholar 

  19. M. A. Laakso, T. T. Heikkilä, and Y. V. Nazarov, Phys. Rev. Lett. 104, 196805 (2010).

    ADS  Google Scholar 

  20. M. H. Devoret, and R. J. Schoelkopf, Nature 406, 1039 (2000).

    Google Scholar 

  21. Z. B. Tan, G. T. Liu, L. Lu, and C. L. Yang, Sci. China-Phys. Mech. Astron. 55, 7 (2012).

    ADS  Google Scholar 

  22. Z. Bai, X. Liu, Z. Lian, K. Zhang, G. Wang, S. F. Shi, X. Pi, and F. Song, Chin. Phys. Lett. 35, 037301 (2018).

    ADS  Google Scholar 

  23. M. Turek, J. Siewert, and K. Richter, Phys. Rev. B 71, 220503 (2005).

    ADS  Google Scholar 

  24. Y. T. Tan, T. Kamiya, Z. A. K. Durrani, and H. Ahmed, J. Appl. Phys. 94, 633 (2003).

    ADS  Google Scholar 

  25. M. T. Björk, C. Thelander, A. E. Hansen, L. E. Jensen, M. W. Larsson, L. R. Wallenberg, and L. Samuelson, Nano Lett. 4, 1621 (2004).

    ADS  Google Scholar 

  26. J. P. Pekola, K. P. Hirvi, J. P. Kauppinen, and M. A. Paalanen, Phys. Rev. Lett. 73, 2903 (1994).

    ADS  Google Scholar 

  27. M. D. LaHaye, O. Buu, B. Camarota, and K. C. Schwab, Science 304, 74 (2004).

    ADS  Google Scholar 

  28. X. Xu, H. Baker, and D. A. Williams, Nano Lett. 10, 1364 (2010).

    ADS  Google Scholar 

  29. P. J. Leek, M. R. Buitelaar, V. I. Talyanskii, C. G. Smith, D. Anderson, G. A. C. Jones, J. Wei, and D. H. Cobden, Phys. Rev. Lett. 95, 256802 (2005).

    ADS  Google Scholar 

  30. L. J. Geerligs, V. F. Anderegg, P. A. M. Holweg, J. E. Mooij, H. Pothier, D. Esteve, C. Urbina, and M. H. Devoret, Phys. Rev. Lett. 64, 2691 (1990).

    ADS  Google Scholar 

  31. X. Jehl, B. Voisin, T. Charron, P. Clapera, S. Ray, B. Roche, M. Sanquer, S. Djordjevic, L. Devoille, R. Wacquez, and M. Vinet, Phys. Rev. X 3, 021012 (2013).

    Google Scholar 

  32. L. Fricke, M. Wulf, B. Kaestner, F. Hohls, P. Mirovsky, B. Mackrodt, R. Dolata, T. Weimann, K. Pierz, U. Siegner, and H. W. Schumacher, Phys. Rev. Lett. 112, 226803 (2014).

    ADS  Google Scholar 

  33. B. Kaestner, V. Kashcheyevs, G. Hein, K. Pierz, U. Siegner, and H. Schumacher, Appl. Phys. Lett. 92, 192106 (2008).

    ADS  Google Scholar 

  34. M. R. Connolly, K. L. Chiu, S. P. Giblin, M. Kataoka, J. D. Fletcher, C. Chua, J. P. Griffiths, G. A. C. Jones, V. I. Fal’ko, C. G. Smith, and T. J. B. M. Janssen, Nat. Nanotech. 8, 417 (2013).

    ADS  Google Scholar 

  35. W. Y. Fu, L. Liu, W. L. Wang, M. H. Wu, Z. Xu, X. D. Bai, and E. G. Wang, Sci. China-Phys. Mech. Astron. 53, 828 (2010).

    ADS  Google Scholar 

  36. X. Q. Zhang, X. W. Xia, J. P. Xu, M. T. Cheng, and Y. P. Yang, Chin. Phys. B 28, 114207 (2019).

    ADS  Google Scholar 

  37. H. Pothier, P. Lafarge, C. Urbina, D. Esteve, and M. H. Devoret, Europhys. Lett. 17, 249 (1992).

    ADS  Google Scholar 

  38. F. Kuemmeth, K. I. Bolotin, S. F. Shi, and D. C. Ralph, Nano Lett. 8, 4506 (2008).

    ADS  Google Scholar 

  39. M. Manoharan, Y. Tsuchiya, S. Oda, and H. Mizuta, Nano Lett. 8, 4648 (2008).

    ADS  Google Scholar 

  40. K. Ohkura, T. Kitade, and A. Nakajima, J. Appl. Phys. 98, 124503 (2005).

    ADS  Google Scholar 

  41. G. Yamahata, S. P. Giblin, M. Kataoka, T. Karasawa, and A. Fujiwara, Appl. Phys. Lett. 109, 013101 (2016).

    ADS  Google Scholar 

  42. L. P. Kouwenhoven, A. T. Johnson, N. C. van der Vaart, C. J. P. M. Harmans, and C. T. Foxon, Phys. Rev. Lett. 67, 1626 (1991).

    ADS  Google Scholar 

  43. J. M. Elzerman, R. Hanson, J. S. Greidanus, L. H. Willems van Beveren, S. De Franceschi, L. M. K. Vandersypen, S. Tarucha, and L. P. Kouwenhoven, Phys. Rev. B 67, 161308 (2003).

    ADS  Google Scholar 

  44. L. X. Zhang, P. Matagne, J. P. Leburton, R. Hanson, and L. P. Kouwenhoven, Phys. Rev. B 69, 245301 (2004).

    ADS  Google Scholar 

  45. H. A. Nilsson, T. Duty, S. Abay, C. Wilson, J. B. Wagner, C. Thelander, P. Delsing, and L. Samuelson, Nano Lett. 8, 872 (2008).

    ADS  Google Scholar 

  46. C. Thelander, T. Mårtensson, M. T. Björk, B. J. Ohlsson, M. W. Larsson, L. R. Wallenberg, and L. Samuelson, Appl. Phys. Lett. 83, 2052 (2003).

    ADS  Google Scholar 

  47. M. P. van Kouwen, M. E. Reimer, A. W. Hidma, M. H. M. van Weert, R. E. Algra, E. P. A. M. Bakkers, L. P. Kouwenhoven, and V. Zwiller, Nano Lett. 10, 1817 (2010).

    ADS  Google Scholar 

  48. J. Wunderlich, T. Jungwirth, B. Kaestner, A. C. Irvine, A. B. Shick, N. Stone, K. Y. Wang, U. Rana, A. D. Giddings, C. T. Foxon, R. P. Campion, D. A. Williams, and B. L. Gallagher, Phys. Rev. Lett. 97, 077201 (2006).

    ADS  Google Scholar 

  49. L. Wu, X. T. Zhang, Z. Wang, Y. Liang, and H. Xu, J. Phys. D-Appl. Phys. 41, 195406 (2008).

    ADS  Google Scholar 

  50. X. Zhang, H. Lu, H. Gao, X. Wang, H. Xu, Q. Li, and S. Hark, Crystal Growth Design 9, 364 (2008).

    Google Scholar 

  51. B. A. Turek, K. W. Lehnert, A. Clerk, D. Gunnarsson, K. Bladh, P. Delsing, and R. J. Schoelkopf, Phys. Rev. B 71, 193304 (2005).

    ADS  Google Scholar 

  52. I. Bâldea, and H. Köppel, Phys. Rev. B 79, 165317 (2009).

    ADS  Google Scholar 

  53. M. H. Devoret, D. Esteve, and C. Urbina, Nature 360, 547 (1992).

    ADS  Google Scholar 

  54. H. Grabert, Zeitschrift Phys. B Condens. Matter 85, 319 (1991).

    ADS  Google Scholar 

  55. S. Lee, Y. Lee, E. B. Song, and T. Hiramoto, Nano Lett. 14, 71 (2014).

    ADS  Google Scholar 

  56. K. Aravind, Y. W. Su, I. L. Ho, C. S. Wu, K. S. Chang-Liao, W. F. Su, K. H. Chen, L. C. Chen, and C. D. Chen, Appl. Phys. Lett. 95, 092110 (2009).

    ADS  Google Scholar 

  57. M. A. Rafiq, K. Masubuchi, Z. A. Durrani, A. Colli, H. Mizuta, W. I. Milne, and Oda S, Jpn J. Appl. Phys. 51, 025202 (2012).

    ADS  Google Scholar 

  58. Z. A. K. Durrani, and M. A. Rafiq, MicroElectron. Eng. 86, 456 (2009).

    Google Scholar 

  59. P. Devillard, V. Gasparian, and T. Martin, Phys. Rev. B 78, 085130 (2008).

    ADS  Google Scholar 

  60. C. Y. Lin, and W. M. Zhang, Appl. Phys. Lett. 99, 072105 (2011).

    ADS  Google Scholar 

  61. J. van der Heijden, G. Tettamanzi, and S. Rogge, Sci. Rep. 7, 44371 (2017).

    ADS  Google Scholar 

  62. S. Giblin, M. Kataoka, J. Fletcher, P. See, T. Janssen, J. Griffiths, G. Jones, I. Farrer, and D. Ritchie, arXiv: 1201.2533.

  63. A. Fuhrer, C. Fasth, and L. Samuelson, Appl. Phys. Lett. 91, 052109 (2007).

    ADS  Google Scholar 

  64. S. d’Hollosy, M. Jung, A. Baumgartner, V. A. Guzenko, M. H. Madsen, J. Nygård, and C. Schönenberger, Nano Lett. 15, 4585 (2015).

    ADS  Google Scholar 

  65. D. Moraru, Y. Ono, H. Inokawa, and M. Tabe, Phys. Rev. B 76, 075332 (2007).

    ADS  Google Scholar 

  66. H. W. Postma, T. Teepen, Z. Yao, M. Grifoni, and C. Dekker, Science 293, 76 (2001).

    ADS  Google Scholar 

  67. D. Zahid Ali Khan, Single-Electron Devices and Circuits in Silicon (World Scientific, Singapore, 2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiuLai Xu.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51761145104, 11934019, 61675228, 11721404, and 11874419), the Strategic Priority Research Program, the Instrument De¬veloping Project and the Interdisciplinary Innovation Team of the Chinese Academy of Sciences (Grant Nos. XDB28000000, and YJKYYQ20180036), and the Key & D Program of Guangdong Province (Grant No. 2018B030329001).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, H., Tang, J., Peng, K. et al. Single-electron pumping in a ZnO single-nanobelt quantum dot transistor. Sci. China Phys. Mech. Astron. 63, 267811 (2020). https://doi.org/10.1007/s11433-019-1494-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-019-1494-4

Keywords

Navigation