Skip to main content
Log in

A hypoplastic macroelement for single vertical piles in sand subject to three-dimensional loading conditions

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

This paper presents a novel macroelement for single vertical piles in sand developed within the hypo-plasticity theory, where the incremental nonlinear constitutive equations are defined in terms of generalized forces, displacements and rotations. Inspired from the macroelement for shallow foundations of Salciarini and Tamagnini (Acta Geotech, 4(3):163–176, 2009), the new element adopts the “intergranular displacement” mutuated from Niemunis and Herle (Mech Cohes Frict Mater, 2:279–299, 1997) to reproduce the behavior under cyclic loading. Analytical and numerical strategies are provided to calibrate the macroelement’s parameters. Comparisons with experimental results show the performance of the macroelement that while being simple and computational fast is suitable for finite element calculations and engineering design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Andria-Ntoanina I, Canou J, Dupla JC (2010) Caractérisation mécanique du sable de Fontainebleau NE34 à l’appareil triaxial sous cisaillement monotone. Tech. rep, Laboratoire Navier - Géotechnique (CERMES, ENPC/LCPC)

  2. Banerjee P, Davies T (1978) The behaviour of axially and laterally loaded single piles embedded in nonhomogeneous soils. Géotechnique 28(3):309–326

    Article  Google Scholar 

  3. Bartlett P (1976) Foundation rocking on clay soil. Department of Civil Engineering, University of Auckland

  4. Boulanger RW, Curras CJ, Member S, Kutter BL, Wilson DW, Member A, Abghari A (1999) Seismic soil-pile-structure interaction experiments and analyses. J Geotech Geoenviron Eng 125(9):750–759. doi:10.1061/(ASCE)1090-0241(1999)125:9(750)

    Article  Google Scholar 

  5. Budhu M, Davies TG (1987) Nonlinear analysis of laterality loaded piles in cohesionless soils. Can Geotech J 24(2):289–296

    Article  Google Scholar 

  6. Calvetti F (2003) Limitations and perspectives of the micromechanical modelling of granular materials. Math Comput Model 37(5):485–495

    Article  MathSciNet  MATH  Google Scholar 

  7. Cambou B, Jean M, Radjai F (2013) Micromechanics of granular materials. Wiley, New York

    MATH  Google Scholar 

  8. Cassidy MJ, Byrne BW, Houlsby GT (2002) Modelling the behaviour of circular footings under combined loading on loose carbonate sand. Geotéchnique 52(10):705–712. doi:10.1680/geot.2002.52.10.705

    Article  Google Scholar 

  9. Chatzigogos C, Pecker A, Salençon J (2009) Macroelement modeling of shallow foundations. Soil Dyn Earthq Eng 29(5):765–781. doi:10.1016/j.soildyn.2008.08.009

    Article  Google Scholar 

  10. Correia AA (2011) A Pile-Head Macro-Element Approach to Seismic Design of monoshaft-supported bridges. Ph.D., Università degli Studi di Pavia & Istituto Universitario di Studi Superiori

  11. Crémer C, Pecker A, Davenne L (2001) Cyclic macro-element for soil-structure interaction: material and geometrical non-linearities. Int J Numer Anal Meth Geomech 25(13):1257–1284. doi:10.1002/nag.175

    Article  MATH  Google Scholar 

  12. Crémer C, Pecker A, Davenne L (2002) Modelling of nonlinear dynamic behaviour of a shallow strip foundation with macro-element. J Earthq Eng 6(2):175–211. doi:10.1080/13632460209350414

    Google Scholar 

  13. Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Géotechnique 29(1):47–65. doi:10.1680/geot.1979.29.1.47

    Article  Google Scholar 

  14. Curras C, Boulanger R, Kutter B, Wilson D (2001) Dynamic experiments and analyses of a pile-group-supported structure. J Geotech Geoenviron Eng 127(7):585–596. doi:10.1061/(ASCE)1090-0241(2001)127:7(585)

    Article  Google Scholar 

  15. Darve F (1978) Une formulation incrémentale des lois rhéologiques. Application aux sols. Ph.D., INP Grenoble

  16. Darve F (2002) Geomaterials: constitutive equations and modelling. CRC Press, Boca Raton

    Google Scholar 

  17. Davenne L, Brenet C (1998) Macro-éléments de poutres en béton armé. Tech. rep., LMT Cachan, num. 210, juin

  18. Davies TG, Budhu M (1986) Non-linear analysis of laterally loaded piles in heavily overconsolidated clays. Géotechnique 36(4):527–538. doi:10.1680/geot.1986.36.4.527

    Article  Google Scholar 

  19. El Shamy U (2008) DEM Simulation of the seismic response of shallow foundation on liquefiable soil. In: Geotechnical Earthquake Engineering and Soil Dynamics IV, pp. 1–10. American Society of Civil Engineers, Reston, VA. doi:10.1061/40975(318)119

  20. Elachachi S (1992) Sur l’élaboration d’une méthode simplifiée d’analyse des structures de Génie Civil par macro-éléments adaptés aux constructions composites et endommageables. Ph.D., Université Paris VI

  21. Eurocode7 (2003) Eurocode7: Geotechnical design. European Committee for Standardization (CEN), Belgium

  22. Eurocode8-Part5 (2003) Eurocode 8: Design of structures for earthquake resistance - Part 5: Foundations, retaining structures and geotechnical aspects. European Committee for Standardization (CEN), Belgium

  23. Figini R, Paolucci R, Chatzigogos CT (2012) A macro-element model for non-linear soil- shallow foundation-structure interaction under seismic loads : theoretical development and experimental validation on large scale tests. Earthq Eng Struct Dyn 41(3):475–493. doi:10.1002/eqe

    Article  Google Scholar 

  24. Filippou F, Constandines M (2004) FedeasLab getting started guide and simulations examples. Ph.D. thesis, University of California, Berkeley, CA

  25. Gajan S (2006) Physical and numerical modeling of nonlinear cyclic load-deformation behavior of shallow foundations supporting rocking shear walls, Ph.D., University of California, Davis

  26. Gajan S, Raychowdhury P, Hutchinson TC, Kutter BL, Stewart JP (2010) Application and validation of practical tools for nonlinear soil-foundation interaction analysis. Earthq Spectra 26(1):111–129

    Article  Google Scholar 

  27. Gajan S, Kutter BL (2009) Contact interface model for shallow foundations subjected to combined cyclic loading. J Geotech Geoenviron Eng 135(3):407–419

    Article  Google Scholar 

  28. Gazetas G (1991) Foundation vibrations. In: Fang HY (ed) Foundation engineering handbook. Springer, US, pp 553–593. doi:10.1007/978-1-4615-3928-5_15

    Chapter  Google Scholar 

  29. Gazetas BG, Dobry R (1984) Horizontal response of piles in layered soils. J Geotech Eng 110(1):20–40. doi:10.1061/(ASCE)0733-9410(1984)110:1(20)

    Article  Google Scholar 

  30. Gerolymos N, Gazetas G (2006) Development of Winkler model for static and dynamic response of caisson foundations with soil and interface nonlinearities. Soil Dyn Earthq Eng 26(5):363–376. doi:10.1016/j.soildyn.2005.12.002

    Article  Google Scholar 

  31. Gerolymos N, Gazetas G (2006) Static and dynamic response of massive caisson foundations with soil and interface nonlinearities-validation and results. Soil Dyn Earthq Eng 26(5):377–394. doi:10.1016/j.soildyn.2005.12.001

    Article  Google Scholar 

  32. Gerolymos N, Gazetas G (2006) Winkler model for lateral response of rigid caisson foundations in linear soil. Soil Dyn Earthq Eng 26(5):347–361. doi:10.1016/j.soildyn.2005.12.003

    Article  Google Scholar 

  33. Gottardi G, Houlsby G, Butterfield R (1999) Plastic response of circular footings on sand under general planar loading. Géotechnique 49(4):453–469

    Article  Google Scholar 

  34. Grange S, Kotronis P, Mazars J (2009) A macro-element to simulate 3D soil-structure interaction considering plasticity and uplift. Int J Solids Struct 46(20):3651–3663. doi:10.1016/j.ijsolstr.2009.06.015

    Article  MATH  Google Scholar 

  35. Grange S, Kotronis P, Mazars J (2009) A macro-element to simulate dynamic soil–structure interaction. Eng Struct 31(12):3034–3046. doi:10.1016/j.engstruct.2009.08.007

    Article  MATH  Google Scholar 

  36. Grange S, Botrugno L, Kotronis P, Tamagnini C (2010) The effects of ioil-itructure interaction on a reinforced concrete viaduct. Earthq Eng Struct Dyn 40(1):93–105. doi:10.1002/eqe

    Article  Google Scholar 

  37. Gudehus G, Amorosi A, Gens A, Herle I, Kolymbas D, Masín D, Muir Wood D, Niemunis A, Nova R, Pastor M, Tamagnini C, Viggiani G (2008) The soilmodels.info project. Int J Numer Anal Meth Geomech 32(12):1571–1572. doi:10.1002/nag.675

    Article  Google Scholar 

  38. Harden CW, Hutchinson TC (2009) Beam-on-nonlinear-winkler-foundation modeling of shallow, rocking-dominated footings. Earthq Spectra 25(2):277–300

    Article  Google Scholar 

  39. Hardin B, Drnevich V, Wang J, Sams C (1994) Resonant column testing at pressures up to 3.5 MPa (500 psi). Dyn Geotech Test II ASTM STP 1:222–233

    Google Scholar 

  40. Kolymbas D (1991) An outline of hypoplasticity. Arch Appl Mech 61(3):143–151

    MATH  Google Scholar 

  41. Kotronis P, Mazars J (2005) Simplified modelling strategies to simulate the dynamic behaviour of R/C walls. J Earthq Eng 9(2):285–306. doi:10.1080/13632460509350543

    Google Scholar 

  42. Le Pape Y, Sieffert JG (2001) Application of thermodynamics to the global modelling of shallow foundations on frictional material. Int J Numer Anal Meth Geomech 25(14):1377–1408. doi:10.1002/nag.186

    Article  MATH  Google Scholar 

  43. Lewis RW, Schrefler BA (1987) The finite element method in the deformation and consolidation of porous media. Wiley, New York

    MATH  Google Scholar 

  44. Li Z (2013) Etude experimentale et numerique de fondations profondes sous sollicitations sismiques: pieux verticaux et pieux inclines - experimental and numerical study of deep foundations under seismic loading: vertical piles and inclined piles. Ph.D., Ecole Centrale de Nantes https://hal.archives-ouvertes.fr/tel-01095508. (in English)

  45. Li Z, Kotronis P, Escoffier S (2014) Numerical study of the 3D failure envelope of a single pile in sand. Comput Geotech 62:11–26. doi:10.1016/j.compgeo.2014.06.004

    Article  Google Scholar 

  46. Martin CM, Houlsby GT (2001) Combined loading of spudcan foundations on clay: numerical modelling. Géotechnique 51(8):687–699. doi:10.1680/geot.2001.51.8.687

    Article  Google Scholar 

  47. Mazars J, Kotronis P, Ragueneau F, Casaux G (2006) Using multifiber beams to account for shear and torsion. Comput Methods Appl Mech Eng 195(52):7264–7281. doi:10.1016/j.cma.2005.05.053

    Article  MATH  Google Scholar 

  48. Meyerhof GG (1951) The ultimate bearing capacity of foudations. Geotéchnique 2(4):301–332. doi:10.1680/geot.1951.2.4.301

    Article  Google Scholar 

  49. Meyerhof BGG, Yalcin S, Mathur SK (1983) Ultimate pile capacity for eccentric inclined load. J Geotech Eng 109(3):408–423. doi:10.1061/(ASCE)0733-9410(1983)109:3(408)

    Article  Google Scholar 

  50. Meyerhof GG, Sastry VVRN, Yalcin AS (1988) Lateral resistance and deflection of flexible piles. Can Geotech J 25(3):511–522. doi:10.1139/t88-056

    Article  Google Scholar 

  51. Meyerhof GG (1995) Behaviour of pile foundations under special loading conditions 1994 R.M. Hardy keynote address. Can Geotech J 32(2):204–222. doi:10.1139/t95-024

    Article  Google Scholar 

  52. Meyerhof GG, Ghosh DP (1989) Ultimate capacity of flexible piles under eccentric and inclined loads. Can Geotech J 26(1):34–42. doi:10.1139/t89-004

    Article  Google Scholar 

  53. Montrasio L, Nova R (1997) Settlements of shallow foundations on sand: geometrical effects. Geotéchnique 47(1):49–60

    Article  Google Scholar 

  54. Murchison JM, O’Neill MW (1984) Evaluation of p-y relationships in cohesionless soils. In: Analysis and design of pile foundations, pp. 174–191. ASCE

  55. Niemunis A (2002) Extended hypoplastic models for soils. Thesis, Bochum University

  56. Niemunis A, Herle I (1997) Hypoplastic model for cohesionless soils with elastic strain range. Mech Cohes Frict Mater 2:279–299

    Article  Google Scholar 

  57. Nogami T, Otani J, Konagai K, Chen H (1992) Nonlinear soil-pile interaction model for dynamic lateral motion. J Geotech Eng 118(1):89–106. doi:10.1061/(ASCE)0733-9410(1992)118:1(89)

    Article  Google Scholar 

  58. Nova R, Montrasio L (1991) Settlements of shallow foundations on sand. Geotéchnique 41(2):243–256. doi:10.1680/geot.1991.41.2.243

    Article  Google Scholar 

  59. Paolucci R (1997) Simplified evaluation of earthquake-induced permanent displacements of shallow foundations. J Earthq Eng 1(3):563–579. doi:10.1080/13632469708962378

    Google Scholar 

  60. Pastor M, Tamagnini C (2004) Numerical modelling in geomechanics. Kogan Page Limited, London

    MATH  Google Scholar 

  61. Pender M, Wotherspoon L, Sa’don NM, Orense R (2012) Macro element for pile head cyclic lateral loading. In: Sakr MA, Ansal A (eds) Special topics in earthquake geotechnical engineering, geotechnical, geological and earthquake engineering, vol 16. Springer, Dordrecht, pp 129–145. doi:10.1007/978-94-007-2060-2

    Chapter  Google Scholar 

  62. Pham BH, Brancherie D, Davenne L, Ibrahimbegovic A (2012) Stress-resultant models for ultimate load design of reinforced concrete frames and multi-scale parameter estimates. Comput Mech 51(3):347–360. doi:10.1007/s00466-012-0734-6

    Article  MathSciNet  MATH  Google Scholar 

  63. Rha C, Taciroglu E (2007) Coupled macroelement model of soil–structure interaction. J Eng Mech 133(12):1326–1340. doi:10.1061/(ASCE)0733-9399(2007)133:12(1326)

    Article  Google Scholar 

  64. Rosquoët F (2004) Pile under lateral cyclic load. Ph.D., Ecole Centrale & Université de Nantes

  65. Salciarini D, Tamagnini C, Grange S, Kotronis P (2010) La modellazione dei fenomeni di interazione terreno struttura mediante macroelementi: elastoplasticità vs. ipoplasticità. Rivista Italiana di Geotecnica 4(2010):9–28

    Google Scholar 

  66. Salciarini D, Bienen B, Tamagnini C (2014) Incorporating scale effects in shallow footings in a hypoplastic macroelement model. Numer Methods Geotech Eng 1:397

    Article  Google Scholar 

  67. Salciarini D, Bienen B, Tamagnini C (2011) A hypoplastic macroelement for shallow foundations subject to six-dimensional loading paths. In: Proceedings international symposium on computational geomechanics (ComGeo II), Cavtat-Dubrovnik, Croatia

  68. Salciarini D, Tamagnini C (2009) A hypoplastic macroelement model for shallow foundations under monotonic and cyclic loads. Acta Geotech 4(3):163–176. doi:10.1007/s11440-009-0087-2

    Article  Google Scholar 

  69. Scott MH, Fenves GL (2006) Plastic hinge integration methods for force-based beamcolumn elements. J Struct Eng 132(2):244–252. doi:10.1061/(ASCE)0733-9445(2006)132:2(244)

    Article  Google Scholar 

  70. Shirato M, Paolucci R, Kouno T, Nakatani S, Fukui J, Nova R, di Prisco C (2009) Numerical simulation of model tests of pier-shallow foundation systems subjected to earthquake loads using an elasto-uplift-plastic macro element. Soils Found 48(5):693–711

    Article  Google Scholar 

  71. Šmilauer V, Catalano E, Chareyre B, Dorofenko S, Duriez J, Gladky A, Kozicki J, Modenese C, Scholtès L, Sibille L, Stránskỳ J, Thoeni K (2010) Yade Documentation, first edn. The Yade Project http://yade-dem.org

  72. Storie L, Pender M, Clifton G, Wotherspoon L (2014) Soil-foundation-structure interaction for buildings on shallow foundations in the christchurch earthquake. In Proceedings 10NCEE, Anchorage, Alaska

  73. Taciroglu E, Rha C, Wallace JW (2006) A robust macroelement model for soil-pile interaction under cyclic loads. J Geotech Geoenviron Eng 132(10):1304–1314. doi:10.1061/(ASCE)1090-0241(2006)132:10(1304)

    Article  Google Scholar 

  74. Tamagnini C, Salciarini D, Ragni R (2013) Implementation of 6–dof hypoplastic macroelement in a finite element code. In: Proceedings of third international symposium on computational geomechanics (ComGeo III). Berlin: Springer

  75. Tamagnini C, Viggiani G (2002) Constitutive modelling for rate-independent soils: a review. Revue française de génie civil 6(6):933–974

    Article  Google Scholar 

  76. Tamagnini C, Viggiani G, Chambon R (2000) A review of two different approaches to hypoplasticity. In: In constitutive modelling of granular materials, pp. 107–145. Springer Berlin

  77. Varun (2010) A non-linear dynamic macroelement for soil structure interaction analysis of piles in liquefiable sites. Ph.D., Georgia Institute of Technology

  78. von Wolffersdorff PA (1996) A hypoplastic relation for granular materials with a predefined limit state surface. Mechanics of Cohesive-Frictional Materials 1(4):251–271. doi:10.1002/(SICI)1099-1484(199607)1:3<251:AID-CFM13>3.0.CO;2-3

  79. Wiessing P (1979) Foundation rocking on sand. Department of Civil Engineering, University of Auckland

  80. Wotherspoon L, Pender J (2010) Effect of shallow foundation modeling on seismic response of moment frame structures. Soil–foundation–structure interaction. CRC Press, Taylor & Francis Group, New York, pp 117–124

    Google Scholar 

  81. Zienkiewicz OC, Chan A, Pastor M, Schrefler B, Shiomi T (1999) Computational geomechanics. Wiley, Chichester

    MATH  Google Scholar 

Download references

Acknowledgments

The financial support of IFSTTAR (Institut français des sciences et technologies des transports, de l’aménagement et des réseaux) and of the Région Pays de la Loire is gratefully acknowledged. The authors would like also to thank the valuable support and help from the technical staff of the IFSTTAR centrifuge team. The first two authors would also like to thank the SINAPS@ project (Sésisme et Installation Nucléaire: Améliorer et Pérenniser la Sureté), approved and funded by the National Agency of Research (ANR) following the RSNR 2012 call for the projects on future investments post-Fukushima (SINAPS@ ANR-11-RSNR-0022). The fourth author acknowledges the financial support provided by the ReLUIS 2014–2016 Project, founded by the Italian Department of Civil Protection. The authors wish to thank the anonymous reviewers for their helpful and constructive comments, which greatly contributed to improving the final version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panagiotis Kotronis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Kotronis, P., Escoffier, S. et al. A hypoplastic macroelement for single vertical piles in sand subject to three-dimensional loading conditions. Acta Geotech. 11, 373–390 (2016). https://doi.org/10.1007/s11440-015-0415-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-015-0415-7

Keywords

Navigation