Skip to main content
Log in

New frontiers in metamaterials research: Novel electronic materials and inhomogeneous metasurfaces

  • Perspective
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

In reviewing some recent work in metamaterials, we highlight two exciting new frontiers just emerging in this field — metamaterials made by new electronic materials (particularly graphene) and inhomogeneous metasurfaces to control light wave-fronts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. G. Veselago, The electrodynamics of substances with simultaneously negative values of ɛ and µ, Sov.Phys. Usp., 1968, 10(4): 509

    Article  ADS  Google Scholar 

  2. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, Magnetism from conductors and enhanced nonlinear phenomena, IEEE Trans.Microw. Theory Tech., 1999, 47: 2075

    Article  ADS  Google Scholar 

  3. R. A. Shelby, D. R. Smith, and S. Schultz, Experimental verification of a negative index of refraction, Science, 2001, 292(5514): 77

    Article  ADS  Google Scholar 

  4. J. B. Pendry, Negative refraction makes a perfect lens, Phys.Rev. Lett., 2000, 85(18): 3966

    Article  ADS  Google Scholar 

  5. N. Fang, H. Lee, C. Sun, and X. Zhang, Sub-diffraction-limited optical imaging with a silver superlens, Science, 2005, 308(5721): 534

    Article  ADS  Google Scholar 

  6. P. Chaturvedi and N. X. Fang, Sub-diffraction-limited far-field imaging in infrared, Front. Phys. China, 2010, 5(3): 324 7.

    Article  Google Scholar 

  7. J. Hao, Y. Yuan, L. X. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, Manipulating electromagnetic wave polarizations by anisotropic metamaterials, Phys. Rev. Lett., 2007, 99(6): 063908

    Article  ADS  Google Scholar 

  8. J. M. Hao, Q. J. Ren, Z. H. An, X. Q. Huang, Z. H. Chen, M. Qiu, and L. Zhou, Optical metamaterial for polarization control, Phys. Rev. A, 2009, 80(2): 023807

    Article  ADS  Google Scholar 

  9. J. M. Hao, M. Qiu, and L. Zhou, Manipulate light polarizations with metamaterials: From microwave to visible, Front. Phys. China, 2010, 5(3): 291

    Article  ADS  Google Scholar 

  10. W. Sun, Q. He, J. Hao, and L. Zhou, A transparent metamaterial to manipulate electromagnetic wave polarizations, Opt. Lett., 2011, 36(6): 927

    Article  ADS  Google Scholar 

  11. C. M. Soukoulis and M. Wegener, Optical metamaterials — More bulky and less lossy, Science, 2010, 330(6011): 1633

    Article  ADS  Google Scholar 

  12. U. Leonhardt, Optical conformal mapping, Science, 2006, 312(5781): 1777

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. J. B. Pendry, D. Schurig, and D. R. Smith, Controlling electromagnetic fields, Science, 2006, 312(5781): 1780

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. H. Y. Chen, C. T. Chan, and P. Sheng, Transformation optics and metamaterials, Nat. Mater., 2010, 9(5): 387

    Article  ADS  Google Scholar 

  15. Y. Lai, J. Ng, H. Y. Chen, D. Z. Han, J. J. Xiao, Z. Q. Zhang, and C. T. Chan, Illusion optics: The optical transformation of an object into another object, Phys. Rev. Lett., 2009, 102(25): 253902

    Article  ADS  Google Scholar 

  16. Y. Lai, J. Ng, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, Illusion optics, Front. Phys. China, 2010, 5(3): 308

    Article  ADS  Google Scholar 

  17. Y. Shen, K. Ding, W. J. Sun, and L. Zhou, A chirality switching device designed with transformation optics, Opt. Express, 2010, 18(20): 21419

    Article  ADS  Google Scholar 

  18. D. Bao, E. Kallos, W. X. Tang, C. Argyropoulos, Y. Hao, and T. J. Cui, A broadband simplified free space cloak realized by nonmagnetic dielectric cylinders, Front. Phys. China, 2010, 5(3): 319

    Article  ADS  Google Scholar 

  19. Z. L. Mei, J. Bai, and T. J. Cui, Experimental verification of a broadband planar focusing antenna based on transformation optics, New J. Phys., 2011, 13(6): 063028

    Article  Google Scholar 

  20. Z. L. Mei, J. Bai, T. M. Niu, and T. J. Cui, A half Maxwell fish-eye lens antenna based on gradient-index metamaterials, IEEE Trans. Antenn. Propag., 2012, 60(1): 398

    Article  ADS  Google Scholar 

  21. Z. L. Mei, J. Bai, and T. J. Cui, Experimental verification of a broadband planar focusing antenna based on transformation optics, New J. Phys., 2011, 13(6): 063028

    Article  Google Scholar 

  22. C. Joseph, Quantum Theory of the Solid State, New York: Academic Press, 1976

    Google Scholar 

  23. A. Boltasseva and H. Atwater, Low-loss plasmonic metamaterials, Science, 2011, 331(6015): 290

    Article  ADS  Google Scholar 

  24. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, and Z. Gaburro, Light propagation with phase discontinuities: Generalized laws of reflection and refraction, Science, 2011, 334(6054): 333

    Article  ADS  Google Scholar 

  25. S. Sun, Q. He, S. Y. Xiao, Q. Xu, X. Li, and L. Zhou, Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves, Nat. Mater., 2012, 11(5): 426

    Article  ADS  Google Scholar 

  26. K. Ding, Y. Shen, J. Ng, and L. Zhou, Europhys. Lett., 2013 (submitted)

    Google Scholar 

  27. H. Yoon, K. Y. M. Yeung, V. Umansky, and D. Ham, A Newtonian approach to extraordinarily strong negative refraction, Nature, 2012, 488(7409): 65

    Article  ADS  Google Scholar 

  28. Y. Sun, B. Edwards, A. Alù, and N. Engheta, Experimental realization of optical lumped nanocircuits at infrared wavelengths, Nat. Mater., 2012, 11(3): 208

    Article  ADS  Google Scholar 

  29. J. N. Chen, M. Badioli, P. Alonso-Gonzlez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Zurutuza, N. Camara, J. Garcia de Abajo, R. Hillenbrand, and F. Koppens, Optical nanoimaging of gate-tunable graphene plasmons, Nature, 2012, 487: 77

    ADS  Google Scholar 

  30. Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, G. Dominguez, M. Thiemens, M. M. Fogler, A. H. Castro-Neto, C. N. Lau, F. Keilmann, and D. N. Basov, Gate-tuning of graphene plasmons revealed by infrared nano-imaging, Nature, 2012, 487: 82

    ADS  Google Scholar 

  31. L. Ju, B. S. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. G. Liang, A. Zettl, and Y. Ron Shen, Graphene plasmonics for tunable terahertz metamaterials, Nat. Nanotechnol., 2011, 6(10): 630

    Article  ADS  Google Scholar 

  32. A. Vakil and N. Engheta, Transformation optics using graphene, Science, 2011, 332(6035): 1291

    Article  ADS  Google Scholar 

  33. A. Yu. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, Fields radiated by a nanoemitter in a graphene sheet, Phys. Rev. B, 2011, 84(19): 195446

    Article  ADS  Google Scholar 

  34. F. H. L. Koppens, D. E. Chang, and F. Javier Garcia de Abajo, Graphene plasmonics: A platform for strong light-matter interactions, Nano Lett., 2011, 11(8): 3370

    Article  Google Scholar 

  35. X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, Broadband light bending with plasmonic nanoantennas, Science, 2012, 335(6067): 427

    Article  ADS  Google Scholar 

  36. M. A. Kats, P. Genevet, G. Aoust, N. Yu, R. Blanchard, F. Aieta, Z. Gaburro, and F. Capasso, Giant birefringence in optical antenna arrays with widely tailorable optical anisotropy, Proc. Natl. Acad. Sci. USA, 2012, 109(31): 12364

    Article  ADS  Google Scholar 

  37. R. Blanchard, G. Aoust, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, Modeling nanoscale V-shaped antennas for the design of optical phased arrays, Phys. Rev. B, 2012, 85(15): 155457

    Article  ADS  Google Scholar 

  38. S. L. Sun, K. Y. Yang, C. M. Wang, T. K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Y. Xiao, W. T. Kung, G. Y. Guo, L. Zhou, and D. P. Tsai, High-efficiency broadband anomalous reflection by gradient meta-surfaces, Nano Lett., 2012, 12(12): 6223

    Article  ADS  Google Scholar 

  39. X. Li, S. Xiao, B. Cai, Q. He, T. J. Cui, and L. Zhou, Flat metasurfaces to focus electromagnetic waves in reflection geometry, Opt. Lett., 2012, 37(23): 4940

    Article  ADS  Google Scholar 

  40. X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C. W. Qiu, S. Zhang, and T. Zentgraf, Dual-polarity plasmonic metalens for visible light, Nat. Commun., 2012, 3: 1198

    Article  ADS  Google Scholar 

  41. A. Pors, M. G. Nielsen, R. L. Eriksen, and S. I. Bozhevolnyi, Broadband focusing flat mirrors based on plasmonic gradient metasurfaces, Nano Lett., http://dx.doi.org/10.1021/nl304761m

  42. F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces, Nano Lett., 2012, 12(9): 4932

    Article  ADS  Google Scholar 

  43. P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, Ultra-thin plasmonic optical vortex plate based on phase discontinuities, Appl. Phys. Lett., 2012, 100(1): 013101

    Article  ADS  Google Scholar 

  44. F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities, Nano Lett., 2012, 12(3): 1702

    Article  ADS  Google Scholar 

  45. N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, A broadband, background-free quarter-wave plate based on plasmonic metasurfaces, Nano Lett., 2012, 12(12): 6328

    Article  ADS  Google Scholar 

  46. L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, Dispersionless phase discontinuities for controlling light propagation, Nano Lett., 2012, 12(11): 5750

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, K., Xiao, SY. & Zhou, L. New frontiers in metamaterials research: Novel electronic materials and inhomogeneous metasurfaces. Front. Phys. 8, 386–393 (2013). https://doi.org/10.1007/s11467-013-0322-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11467-013-0322-z

Keywords

Navigation