Skip to main content
Log in

Electronic structures and magnetic properties of rare-earth-atom-doped BNNTs

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Stable geometries, electronic structures, and magnetic properties of (8,0) and (4,4) single-walled BN nanotubes (BNNTs) doped with rare-earth (RE) atoms are investigated using the first-principles pseudopotential plane wave method with density functional theory (DFT). The results show that these RE atoms can be effectively doped in BNNTs with favorable energies. Because of the curvature effect, the values of binding energy for RE-atom–doped (4,4) BNNTs are larger than those of the same atoms on (8,0) BNNTs. Electron transfer between RE-5d, 6s, and B-2p, N-2p orbitals was also observed. Furthermore, electronic structures and magnetic properties of BNNTs can be modified by such doping. The results show that the adsorption of Ce, Pm, Sm, and Eu atoms can induce magnetization, while no magnetism is observed when BNNTs are doped with La. These results are useful for spintronics applications and for developing magnetic nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Iijima, Helical microtubules of graphitic carbon, Nature 354(6348), 56 (1991)

    Article  ADS  Google Scholar 

  2. R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, Carbon nanotubes — the route toward applications, Science 297(5582), 787 (2002)

    Article  ADS  Google Scholar 

  3. D. Tasis, N. Tagmatarchis, A. Bianco, and M. Prato, Chemistry of carbon nanotubes, Chem. Rev. 106(3), 1105 (2006)

    Article  Google Scholar 

  4. V. Bougrov, M. E. Levinshtein, S. L. Rumyantsev, M. E. Levin-shtein, S. L. Rumyantsev, and M. S. Shur, Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe, New York: Wiley, 2001

    Google Scholar 

  5. D. Golberg, Y. Bando, C. C. Tang, and C. Y. Zhi, Boron nitride nanotubes, Adv. Mater. 19(18), 2413 (2007)

    Article  Google Scholar 

  6. Z. Zhou and Y. F. Li, How different are BN nanotubes from carbon nanotubes? J. Comput. Theor. Nanosci. 6(2), 327 (2009)

    Article  ADS  Google Scholar 

  7. C. Y. Zhi, Y. Bando, C. C. Tang, and D. Golberg, Engineering of electronic structure of boron-nitride nanotubes by covalent functionalization, Phys. Rev. B 74(15), 153413 (2006)

    Article  ADS  Google Scholar 

  8. L. Lai, W. Song, J. Lu, Z. Gao, S. Nagase, M. Ni, W. N. Mei, J. Liu, D. Yu, and H. Ye, Structural and electronic properties of fluorinated boron nitride nanotubes, J. Phys. Chem. B 110(29), 14092 (2006)

    Article  Google Scholar 

  9. J. Zhang, K. P. Loh, W. S. Yang, and P. Wu, Exohedral doping of single-walled boron nitride nanotube by atomic chemisorption, Appl. Phys. Lett. 87(24), 243105 (2005)

    Article  ADS  Google Scholar 

  10. C. Jo, C. Kim, and Y. H. Lee, Electronic properties of Kdoped single-wall carbon nanotube bundles, Phys. Rev. B 65(3), 035420 (2002)

    Article  ADS  Google Scholar 

  11. J. Zhao, A. Buldum, J. Han, and J. P. Lu, First-principles study of Li-intercalated carbon nanotube ropes, Phys. Rev. Lett. 85(8), 1706 (2000)

    Article  ADS  Google Scholar 

  12. J. W. Zheng, S. M. L. Nai, M. F. Ng, P. Wu, J. Wei, and M. Gupta, DFT study on nano structures of Sn/CNT complex for potential li-ion battery application, J. Phys. Chem. C 113(31), 14015 (2009)

    Article  Google Scholar 

  13. E. Durgun, S. Dag, V.M. K. Bagci, O. Gülseren, T. Yildirim, and S. Ciraci, Systematic study of adsorption of single atoms on a carbon nanotube, Phys. Rev. B 67(20), 201401 (2003)

    Article  ADS  Google Scholar 

  14. E. Durgun, S. Dag, S. Ciraci, and O. Gülseren, Energetics and electronic structures of individual atoms adsorbed on carbon nanotubes, J. Phys. Chem. B 108(2), 575 (2004)

    Article  Google Scholar 

  15. Y. L. Mao, X. H. Yan, and Y. Xiao, First-principles study of transition-metal-doped single-walled carbon nanotubes, Nanotechnology 16(12), 3092 (2005)

    Article  ADS  Google Scholar 

  16. A. Udomvech, T. Kerdcharoen, and T. Osotchan, First principles study of Li and Li+ adsorbed on carbon nanotube: Variation of tubule diameter and length, Chem. Phys. Lett. 406(1-3), 161 (2005)

    Article  ADS  Google Scholar 

  17. Q. X. Zhou, C. Y. Wang, Z. B. Fu, Y. J. Tang, and H. Zhang, Effects of various defects on the electronic properties of single-walled carbon nanotubes: A first principle study, Front. Phys. 9(2), 200 (2014)

    Article  Google Scholar 

  18. J. Ren, H. Zhang, and X. L. Cheng, Electronic and magnetic properties of all 3 d transition-metal-doped ZnO monolayers, Int. J. Quantum Chem. 113(19), 2243 (2013)

    Article  Google Scholar 

  19. X. Wu and X. C. Zeng, Adsorption of transition-metal atoms on boron nitride nanotube: A density-functional study, J. Chem. Phys. 125(4), 44711 (2006)

    Article  MathSciNet  Google Scholar 

  20. S. F. Wang, Y. Zhang, J. M. Zhang, K. W. Xu, and V. Ji, Electronic structure and optical property of 3d transition metal doped (5,5) boron nitride nanotube, Appl. Phys. A 109(3), 601 (2012)

    Article  ADS  Google Scholar 

  21. R. J. Baierle, T. M. Schmidt, and A. Fazzio, Adsorption of CO and NO molecules on carbon doped boron nitride nanotubes, Solid State Commun. 142(1–2), 49 (2007)

    Article  ADS  Google Scholar 

  22. Y. F. Zhukovskii, S. Bellucci, S. Piskunov, L. Trinkler, and B. Berzina, Atomic and electronic structure of single-walled BN nanotubes containing N vacancies as well as C and O substitutes of N atoms, Eur. Phys. J. B 67(4), 519 (2009)

    Article  ADS  Google Scholar 

  23. C. S. Guo, W. J. Fan, and R. Q. Zhang, Spin polarization of the injected carriers in C-doped BN nanotubes, Solid State Commun. 137(5), 246 (2006)

    Article  ADS  Google Scholar 

  24. C. Y. Zhi, X. D. Bai, and E. G. Wang, Boron carbonitride nanotubes, J. Nanosci. Nanotechnol. 4(1–2), 35 (2004)

    Article  Google Scholar 

  25. C. Zhi, Y. Bando, C. Tang, and D. Golberg, Boron nitride nanotubes, Mater. Sci. Eng. Rep. 70(3–6), 92 (2010)

    Article  Google Scholar 

  26. H. Choi, Y. C. Park, Y. H. Kim, and Y. S. Lee, Ambient carbon dioxide capture by boron-rich boron nitride nanotube, J. Am. Chem. Soc. 133(7), 2084 (2011)

    Article  Google Scholar 

  27. Y. Xie, Y. P. Huo, and J. M. Zhang, First-principles study of CO and NO adsorption on transition metals doped (8,0) boron nitride nanotube, Appl. Surf. Sci. 258(17), 6391 (2012)

    Article  ADS  Google Scholar 

  28. X. M. Li, W. Q. Tian, X. R. Huang, C. C. Sun, and L. Jiang, Adsorption of hydrogen on novel Pt-doped BN nanotube: A density functional theory study, J. Mol. Struct. 901(1–3), 103 (2009)

    Article  Google Scholar 

  29. Q. Dong, X. M. Li, W. Q. Tian, X. R. Huang, and C. C. Sun, Theoretical studies on the adsorption of small molecules on Pt-doped BN nanotubes, J. Mol. Struct. 948(1–3), 83 (2010)

    Article  Google Scholar 

  30. M. T. Baei, A. R. Soltani, A. V. Moradi, and E. T. Lemeski, Adsorption properties of N2O on (6,0), (7,0), and (8,0) zigzag single-walled boron nitride nanotubes: A computational study, Comput. Theor. Chem. 970(1–3), 30 (2011)

    Article  Google Scholar 

  31. J. P. Perdew, and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B 45(23), 13244 (1992)

    Article  ADS  Google Scholar 

  32. B. Delley, From molecules to solids with the DMol3 approach, J. Chem. Phys. 113(18), 7756 (2000)

    Article  ADS  Google Scholar 

  33. A. Rubio-Ponce, A. Conde-Gallardo, and D. Olguin, Firstprinciples study of anatase and rutile TiO2 doped with Eu ions: A comparison of GGA and LDA + U calculations, Phys. Rev. B 78(3), 035107 (2008)

    Article  ADS  Google Scholar 

  34. A. Delin, L. Fast, B. Johansson, O. Eriksson, and J. M. Wills, Cohesive properties of the lanthanides: Effect of generalized gradient corrections and crystal structure, Phys. Rev. B 58(8), 4345 (1998)

    Article  ADS  Google Scholar 

  35. B. Delley, Hardness conserving semilocal pseudopotentials, Phys. Rev. B 66(15), 155125 (2002)

    Article  ADS  Google Scholar 

  36. S. L. Yue and H. Zhang, First principles study on magnetic and electronic properties with rare-earth atoms doped SWCNTs, Front. Phys. 7(3), 353 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Ren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, J., Zhang, NC., Wang, P. et al. Electronic structures and magnetic properties of rare-earth-atom-doped BNNTs. Front. Phys. 11, 118101 (2016). https://doi.org/10.1007/s11467-015-0533-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-015-0533-6

Keywords

Navigation