Skip to main content
Log in

Direct growth of graphene on gallium nitride using C2H2 as carbon source

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Growing graphene on gallium nitride (GaN) at temperatures greater than 900◦C is a challenge that must be overcome to obtain high quality of GaN epi-layers. We successfully met this challenge using C2H2 as the carbon source. We demonstrated that graphene can be grown both on copper and directly on GaN epi-layers. The Raman spectra indicated that the graphene films were about 4–5 layers thick. Meanwhile, the effects of the growth temperature on the growth of the graphene films were systematically studied, and 830◦C was found to be the optimum growth temperature. We successfully grew high-quality graphene films directly on gallium nitride.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. F. Chichibu, A. Uedono, T. Onuma, B. A. Haskell, A. Chakraborty, T. Koyama, P. T. Fini, S. Keller, S. P. Denbaars, J. S. Speck, U. K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, and T. Sota, Origin of defect-insensitive emission probability in Incontaining (Al,In,Ga)N alloy semiconductors, Nat. Mater. 5(10), 810 (2006)

    Article  ADS  Google Scholar 

  2. S. Nakamura, The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes, Science 281(5379), 955 (1998)

    Article  Google Scholar 

  3. R. H. Horng, S. T. Lin, Y. L. Tsai, M. T. Chu, W. Y. Liao, M. H. Wu, and R. Lin, Mand Lu Y C, Improved conversion efficiency of GaN/InGaN thin-film solar cells, IEEE Electron Device Lett. 30(7), 724 (2009)

    Article  ADS  Google Scholar 

  4. U. K. Mishra, P. Parikh, and Y. F. Wu, AlGaN/GaN HEMTs-an overview of device operation and applications, Proc. IEEE 90(6), 1022 (2002)

    Article  Google Scholar 

  5. Y. L. Zhao, Y. L. Song, W. G. Song, W. Liang, X. Y. Jiang, Z. Y. Tang, H. X. Xu, Z. X. Wei, Y. Q. Liu, M. H. Liu, L. Jiang, X.H. Bao, L. J. Wan, and C. L. Bai, Progress of nanoscience in China, Front. Phys. 9(3), 257 (2014)

    Article  Google Scholar 

  6. Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature 438(7065), 201 (2005)

    Article  ADS  Google Scholar 

  7. T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg, Controlling the electronic structure of bilayer graphene, Science 313(5789), 951 (2006)

    Article  ADS  Google Scholar 

  8. F. Miao, S. Wijeratne, Y. Zhang, U. C. Coskun, W. Bao, and C. N. Lau, Phase-coherent transport in graphene quantum billiards, Science 317(5844), 1530 (2007)

    Article  ADS  Google Scholar 

  9. K. I. Bolotin, S. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, P. Hone Kim, and H. L. Stormer, Ultrahigh electron mobility in suspended graphene, Solid State Commun. 146(9–10), 351 (2008)

    Article  ADS  Google Scholar 

  10. G. Eda, G. Fanchini, and M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material, Nat. Nanotechnol. 3(5), 270 (2008)

    Article  Google Scholar 

  11. C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics, J. Phys. Chem. B 108(52), 19912 (2004)

    Article  Google Scholar 

  12. M. Y. Han, B. Ozyilmaz, Y. Zhang, and P. Kim, Energy band-gap engineering of graphene nanoribbons, Phys. Rev. Lett. 98(20), 206805 (2007)

    Article  ADS  Google Scholar 

  13. N. P. Dasgupta and P. D. Yang, Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion, Front. Phys. 9(3), 289 (2014)

    Article  Google Scholar 

  14. X. Wang, L. Zhi, and K. Müllen, Transparent, conductive graphene electrodes for dye-sensitized solar cells, Nano Lett. 8(1), 323 (2008)

    Article  ADS  Google Scholar 

  15. P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, Graphene-based liquid crystal device, Nano Lett. 8(6), 1704 (2008)

    Article  ADS  Google Scholar 

  16. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Superior thermal conductivity of single-layer graphene, Nano Lett. 8(3), 902 (2008)

    Article  ADS  Google Scholar 

  17. J. Wu, M. Agrawal, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, Organic light-emitting diodes on solutionprocessed graphene transparent electrodes, ACS Nano 4(1), 43 (2010)

    Article  Google Scholar 

  18. T. Mueller, F. N. Xia, and P. Avouris, Graphene photo detectors for high-speed optical communications, Nat. Photonics 4(5), 297 (2010)

    Article  Google Scholar 

  19. H. Li, Y. F. Dong, D. D. Wang, W. Chen, L. Huang, C. W. Shi, and L. Q. Mai, Hierarchical nanowires for highperformance electrochemical energy storage, Front. Phys. 9(3), 303 (2014)

    Article  Google Scholar 

  20. N. Liu, W. Li, M. Pasta, and Y. Cui, Nanomaterials for electrochemical energy storage, Front. Phys. 9(3), 323 (2014)

    Article  Google Scholar 

  21. Y. Wu, J. Wang, K. Jiang, and S. Fan, Applications of carbon nanotubes in high performance lithium ion batteries, Front. Phys. 9(3), 351 (2014)

    Article  MATH  Google Scholar 

  22. H. Ueta, H. Saida, C. Nakai, Y. Yamada, M. Sasaki, and S. Yamamoto, Highly oriented monolayer graphite formation on Pt(111) by a supersonic methane beam, Surf. Sci. 560(1–3), 183 (2004)

    Article  ADS  Google Scholar 

  23. N. Gall, E. Rut’kov, and A. Tontegode, Interaction of silver atoms with iridium and with a two-dimensional graphite film on iridium: Adsorption, desorption, and dissolution, Phys. Solid State 46(2), 371 (2004)

    Article  ADS  Google Scholar 

  24. S. Marchini, S. Günther, and J. Wintterlin, Scanning tunneling microscopy of graphene on Ru(0001), Phys. Rev. B 76(7), 075429 (2007)

    Article  ADS  Google Scholar 

  25. J. Coraux, A. T. N’Diaye, C. Busse, and T. Michely, Structural coherency of graphene on Ir(111), Nano Lett. 8(2), 565 (2008)

    Article  ADS  Google Scholar 

  26. A. L. Vázquez de Parga, F. Calleja, B. Borca, J. J. Passeggi, F. Hinarejos, F. Guinea, and R. Miranda, Periodically rippled graphene: Growth and spatially resolved electronic structure, Phys. Rev. Lett. 100(5), 056807 (2008)

    Article  ADS  Google Scholar 

  27. P. W. Sutter, J. I. Flege, and E. A. Sutter, Epitaxial graphene on ruthenium, Nat. Mater. 7(5), 406 (2008)

    Article  ADS  Google Scholar 

  28. Y. Hao, M. S. Bharathi, L. Wang, Y. Liu, H. Chen, S. Nie, X. Wang, H. Chou, C. Tan, B. Fallahazad, H. Ramanarayan, C. W. Magnuson, E. Tutuc, B. I. Yakobson, K. F. McCarty, Y. W. Zhang, P. Kim, J. Hone, L. Colombo, and R. S. Ruoff, The role of surface oxygen in the growth of large singlecrystal graphene on copper, Science 342(6159), 720 (2013)

    Article  ADS  Google Scholar 

  29. Z. Yun, W. Gang, and H. C. Yang, Direct growth of graphene on gallium nitride by using chemical vapor deposition without extra catalyst, Chin. Phys. B 23(9), 096802 (2014)

    Article  ADS  Google Scholar 

  30. Y. S. Kim, J. H. Lee, Y. D. Kim, S. K. Jerng, K. Joo, E. Kim, J. Jung, E. Yoon, Y. D. Park, S. Seo, and S. H. Chun, Methane as an effective hydrogen source for singlelayer graphene synthesis on Cu foil by plasma enhanced chemical vapor depositio, Nanoscale 5(3), 1221 (2013)

    Article  ADS  Google Scholar 

  31. M. S. Kim, N. M. Rodriguez, and R. T. K. Baker, The interaction of hydrocarbons with copper-nickel and nickel in the formation of carbon filaments, J. Catal. 131(1), 60 (1991)

    Article  Google Scholar 

  32. M. Furtado and G. Jacob, Study on the influence of annealing effects in GaN VPE, J. Cryst. Growth 64(2), 257 (1983)

    Article  ADS  Google Scholar 

  33. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Raman spectrum of graphene and graphene layers, Phys. Rev. Lett. 97(18), 187401 (2006)

    Article  ADS  Google Scholar 

  34. L. Tao, C. Y. Qiu, F. Yu, H. C. Yang, M. J. Chen, G. Wang, and L. F. Sun, Modification on single-layer graphene induced by low-energy electron-beam irradiation, J. Phys. Chem. C 117(19), 10079 (2013)

    Article  Google Scholar 

  35. M. M. Qin, W. Ji, Y. Y. Feng, and W. Feng, Transparent conductive graphene films prepared by hydroiodic acid and thermal reduction, Chin. Phys. B 23(2), 028103 (2014)

    Article  ADS  Google Scholar 

  36. I. Calizo, I. Bejenari, M. Rahman, G. X. Liu, and A. A. Balandin, Ultraviolet Raman microscopy of single and multilayer graphene, J. Appl. Phys. 106(4), 043509 (2009)

    Article  ADS  Google Scholar 

  37. Y. Hao, Y. Wang, L. Wang, Z. Ni, Z. Wang, R. Wang, C. K. Koo, Z. Shen, and J. T. L. Thong, Probing layer number and stacking order of few-layer graphene by Raman spectroscopy, Small 6(2), 195 (2010)

    Article  Google Scholar 

  38. G. Nandamuri, S. Roumimov, and R. Solanki, Chemical vapor deposition of graphene films, Nanotechnology 21(14), 145604 (2010)

    Article  ADS  Google Scholar 

  39. M. Regmi, M. F. Chisholm, and G. Eres, The effect of growth parameters on the intrinsic properties of large-area single layer graphene grown by chemical vapor deposition on Cu, Carbon 50(1), 134 (2012)

    Article  Google Scholar 

  40. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Large-area synthesis of high-quality and uniform graphene films on copper foils, Science 324(5932), 1312 (2009)

    Article  ADS  Google Scholar 

  41. P. Trinsoutrot, C. Rabot, H. Vergnes, A. Delamoreanu, A. Zenasni, and B. Caussat, High quality graphene synthesized by atmospheric pressure CVD on copper foil, Surf. Coat. Tech. 230, 87 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bing Wang  (王兵) or Xiao-Yan Yi  (伊晓燕).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Zhao, Y., Yi, XY. et al. Direct growth of graphene on gallium nitride using C2H2 as carbon source. Front. Phys. 11, 116803 (2016). https://doi.org/10.1007/s11467-015-0534-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-015-0534-5

Keywords

Navigation