Skip to main content
Log in

Rotation-translation coupling of a double-headed Brownian motor in a traveling-wave potential

  • Research Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Considering a double-headed Brownian motor moving with both translational and rotational degrees of freedom, we investigate the directed transport properties of the system in a traveling-wave potential. It is found that the traveling wave provides the essential condition of the directed transport for the system, and at an appropriate angular frequency, the positive current can be optimized. A general current reversal appears by modulating the angular frequency of the traveling wave, noise intensity, external driving force and the rod length. By transforming the dynamical equation in traveling-wave potential into that in a tilted potential, the mechanism of current reversal is analyzed. For both cases of Gaussian and Lévy noises, the currents show similar dependence on the parameters. Moreover, the current in the tilted potential shows a typical stochastic resonance effect. The external driving force has also a resonance-like effect on the current in the tilted potential. But the current in the traveling-wave potential exhibits the reverse behaviors of that in the tilted potential. Besides, the currents obviously depend on the stability index of the Lévy noise under certain conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Reimann, Brownian motors: Noisy transport far from equilibrium, Phys. Rep. 361(2–4), 57 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. P. Hänggi and F. Marchesoni, Artificial Brownian motors: Controlling transport on the nanoscale, Rev. Mod. Phys. 81(1), 387 (2009)

    Article  ADS  Google Scholar 

  3. C. S. Peskin, G. M. Odell, and G. F. Oster, Cellular motions and thermal fluctuations: The Brownian ratchet, Biophys. J. 65(1), 316 (1993)

    Article  ADS  Google Scholar 

  4. R. D. Astumian, Thermodynamics and kinetics of a Brownian motor, Science 276(5314), 917 (1997)

    Article  Google Scholar 

  5. P. Reimann and P. Hänggi, Introduction to the physics of Brownian motors, Appli. Phys. A 75(2), 169 (2002)

    Article  ADS  Google Scholar 

  6. S. von Gehlen, M. Evstigneev, and P. Reimann, Ratchet effect of a dimer with broken friction symmetry in a symmetric potential, Phys. Rev. E 79(3), 031114 (2009)

    Article  ADS  Google Scholar 

  7. M. Khoury, A. M. Lacasta, J. M. Sancho, and K. Lindenberg, Weak disorder: anomalous transport and diffusion are normal yet again, Phys. Rev. Lett. 106(9), 090602 (2011)

    Article  ADS  Google Scholar 

  8. D. Cubero and F. Renzoni, Brownian Ratchets: From Statistical Physics to Bio- and Nano-motors, Cambridge University Press, Cambridge, 2016

    Book  Google Scholar 

  9. C. Hyeon and W. Hwang, Physical insight into the thermodynamic uncertainty relation using Brownian motion in tilted periodic potentials, Phys. Rev. E 96(1), 012156 (2017)

    Article  ADS  Google Scholar 

  10. T. Siebert, F. Dittrich, F. Schmid, K. Binder, T. Speck, and P. Virnau, Critical behavior of active Brownian particles, Phys. Rev. E 98(3), 030601 (2018)

    Article  ADS  Google Scholar 

  11. M. J. Skaug, C. Schwemmer, S. Fringes, C. D. Rawlings, and A. W. Knoll, Nanofluidic rocking Brownian motors, Science 359(6383), 1505 (2018)

    Article  ADS  Google Scholar 

  12. R. Salgado-García, Noise-induced rectification in out-of-equilibrium structures, Phys. Rev. E 99(1), 012128 (2019)

    Article  ADS  Google Scholar 

  13. S. Pattanayak, R. Das, M. Kumar, and S. Mishra, Enhanced dynamics of active Brownian particles in periodic obstacle arrays and corrugated channels, Eur. Phys. J. E 42(5), 62 (2019)

    Article  Google Scholar 

  14. P. Hänggi, J. Tuczka, and J. Spiechowicz, Many faces of nonequilibrium: Anomalous transport phenomena in driven periodic systems, Acta Phys. Pol. 51(5), 1131 (2020)

    Article  ADS  Google Scholar 

  15. A. Nakamura, K. I. Okazaki, T. Furuta, M. Sakurai, J. Ando, and R. Iino, Crystalline chitin hydrolase is a burnt-bridge Brownian motor, Biophys. 17, 51 (2020)

    Article  Google Scholar 

  16. H. Qian, A simple theory of motor protein Kinesin and energetics, Biophys. Chem. 67(1–3), 263 (1997)

    Article  MathSciNet  Google Scholar 

  17. W. R. Schief and J. Howard, Conformational changes during Kinesin motility, Curr. Opin. Cell Biol. 13(1), 19 (2001)

    Article  Google Scholar 

  18. A. B. Kolomeisky and M. E. Fisher, A simple kinetic model describes the processivity of myosin-V, Biophys. J. 84(3), 1642 (2003)

    Article  ADS  Google Scholar 

  19. L. C. Kapitein, B. H. Kwok, J. S. Weinger, C. F. Schmidt, T. M. Kapoor, and E. J. G. Peterman, Microtubule cross-linking triggers the directional motility of kinesin-5, J. Cell Biol. 182(3), 421 (2008)

    Article  Google Scholar 

  20. M. Takanoa, T. P. Teradab, and M. Sasai, Unidirectional Brownian motion observed in an in silico single molecule experiment of an actomyosin motor, Proc. Natl. Acad. Sci. USA 107(17), 7769 (2010)

    Article  ADS  Google Scholar 

  21. F. J. Kull and S. A. Endow, Force generation by kinesin and myosin cytoskeletal motor proteins, J. Cell Sci. 126(Pt 1), 9 (2013)

    Google Scholar 

  22. J. E. Komianos and G. A. Papoian, Stochastic ratcheting on a funneled energy landscape is necessary for highly efficient contractility of actomyosin force dipoles, Phys. Rev. X 8(2), 021006 (2018)

    Google Scholar 

  23. G. Knoops and C. Vanderzande, Motion of kinesin in a viscoelastic medium, Phys. Rev. E 97(5), 052408 (2018)

    Article  ADS  Google Scholar 

  24. R. D. Astumian and M. Bier, Fluctuation driven ratchets: Molecular motors, Phys. Rev. Lett. 72(11), 1766 (1994)

    Article  ADS  Google Scholar 

  25. A. Sarmiento and H. Larralde, Deterministic transport in ratchets, Phys. Rev. E 59(5), 4878 (1999)

    Article  ADS  Google Scholar 

  26. A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, Myosin V walks hand-overhand: Single fluorophore imaging with 1.5-nm localization, Science 300(5628), 2061 (2003)

    Article  ADS  Google Scholar 

  27. C. L. Asbury, A. N. Fehr, and S. M. Block, Kinesin moves by an asymmetric hand-over-hand mechanism, Science 302(5653), 2130 (2003)

    Article  ADS  Google Scholar 

  28. A. Yildiz, M. Tomishige, R. D. Vale, and P. R. Selvin, Kinesin walks hand-over-hand, Science 303(5658), 676 (2004)

    Article  ADS  Google Scholar 

  29. A. Mehta, Myosin learns to walk, J. Cell Sci. 114(11), 1981 (2001)

    Article  Google Scholar 

  30. Z. Ökten, L. S. Churchman, R. S. Rock, and J. A. Spudich, Myosin VI walks hand-over-hand along actin, Nat. Struct. Mol. Biol. 11(9), 884 (2004)

    Article  Google Scholar 

  31. Y. X. Li, X. Z. Wu, and Y. Z. Zhuo, Directed motion of two-headed Brownian motors, Mod. Phys. Lett. B 14(13), 479 (2000)

    Article  ADS  Google Scholar 

  32. A. K. Zhao, H. W. Zhang, and Y. X. Li, Feedback control of two-headed Brownian motors in flashing ratchet potential, Chin. Phys. B 19(11), 110506 (2010)

    Article  ADS  Google Scholar 

  33. C. P. Li, H. B. Chen, and Z. G. Zheng, Double-temperature ratchet model and current reversal of coupled Brownian motors, Front. Phys. 12(6), 120507 (2017)

    Article  ADS  Google Scholar 

  34. L. F. Lin, H. Q. Wang, and H. Ma, Directed transport properties of double-headed molecular motors with balanced cargo, Physica A 517, 270 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  35. J. Howard, The movement of kinesin along microtubules, Annu. Rev. Physiol. 58(1), 703 (1996)

    Article  Google Scholar 

  36. E. Toprak, J. Enderlein, S. Syed, S. A. McKinney, R. G. Petschek, T. Ha, Y. E. Goldman, and P. R. Selvin, Defocused orientation and position imaging (DOPI) of myosin V, Proc. Natl. Acad. Sci. USA 103(17), 6495 (2006)

    Article  ADS  Google Scholar 

  37. A. R. Dunn and J. A. Spudich, Dynamics of the unbound head during myosin V processive translocation, Nat. Struct. Mol. Biol. 14(3), 246 (2007)

    Article  Google Scholar 

  38. B. Geislinger and R. Kawai, Brownian molecular motors driven by rotation-translation coupling, Phys. Rev. E 74(1), 011912 (2006)

    Article  ADS  Google Scholar 

  39. L. Y. Qiao, Y. Y. Li, and Z. G. Zheng, Rotational effect in two-dimensional cooperative directed transport, Front. Phys. 10(1), 108701 (2015)

    Article  Google Scholar 

  40. R. N. Mantegna and B. Spagnolo, Stochastic resonance in a tunnel diode in the presence of white or coloured noise, Nuovo Cimento D 17(7–8), 873 (1995)

    Article  ADS  Google Scholar 

  41. R. N. Mantegna and B. Spagnolo, Noise enhanced stability in an unstable system, Phys. Rev. Lett. 76(4), 563 (1996)

    Article  ADS  Google Scholar 

  42. L. Gammaitoni, P. Hänggi, P. Jung, and F. Marchesoni, Stochastic resonance, Rev. Mod. Phys. 70(1), 223 (1998)

    Article  ADS  Google Scholar 

  43. R. N. Mantegna, B. Spagnolo, and M. Trapanese, Linear and nonlinear experimental regimes of stochastic resonance, Phys. Rev. E 63(1), 011101 (2001)

    Article  ADS  Google Scholar 

  44. B. Spagnolo, D. Valenti, C. Guarcello, A. Carollo, D. Persano Adorno, S. Spezia, N. Pizzolato, and B. Di Paola, Noise-induced effects in nonlinear relaxation of condensed matter systems, Chaos Solitons Fractals 81(8), 412 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  45. C. Guarcello, D. Valenti, A. Carollo, and B. Spagnolo, Effects of Lévy noise on the dynamics of sine-Gordon solitons in long Josephson junctions, J. Stat. Mech.: Theory Exp. 2016(5), 054012 (2016)

    Article  MATH  Google Scholar 

  46. B. Spagnolo, C. Guarcello, L. Magazzù, A. Carollo, D. P. Adorno, and D. Valenti, Nonlinear relaxation phenomena in metastable condensed matter systems, Entropy (Basel) 19(1), 20 (2017)

    Article  ADS  Google Scholar 

  47. M. S. Simon, J. M. Sancho, and K. Lindenberg, Transport and diffusion of overdamped Brownian particles in random potentials, Phys. Rev. E 88(6), 062105 (2013)

    Article  ADS  Google Scholar 

  48. C. P. Li, H. B. Chen, and Z. G. Zheng, Ratchet motion and current reversal of coupled Brownian motors in pulsating symmetric potentials, Front. Phys. 12(4), 120502 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  49. S. N. Ethier and J. Lee, The tilted flashing Brownian ratchet, Fluct. Noise Lett. 18(1), 1950005 (2019)

    Article  ADS  Google Scholar 

  50. X. Zhang, J. H. Cao, B. Q. Ai, T. F. Gao, and Z. G. Zheng, Investigation on the directional transportation of coupled Brownian motors with asymmetric friction, Acta Physica Sinica 69(10), 100503 (2020) (in Chinese)

    Article  Google Scholar 

  51. D. del-Castillo-Negrete, V. Yu. Gonchar, and A. V. Chechkin, Fluctuation-driven directed transport in the presence of Lévy flights, Physica A 387(27), 6693 (2008)

    Article  ADS  Google Scholar 

  52. Y. G. Li, Y. Xu, J. Kurths, and X. L. Yue, Lévy-noise-induced transport in a rough triple-well potential, Phys. Rev. E 94(4), 042222 (2016)

    Article  ADS  Google Scholar 

  53. D. Dan, M. C. Mahato, and A. M. Jayannavar, Stochastic resonance in washboard potentials, Phys. Lett. A 258(4–6), 217 (1999)

    Article  ADS  Google Scholar 

  54. C. P. Li, H. B. Chen, H. Fan, G. Y. Xie, and Z. G. Zheng, Cooperation and competition between two symmetry breakings in a coupled ratchet, Physica A 494(6), 175 (2018)

    ADS  MathSciNet  Google Scholar 

  55. B. Lisowski, D. Valenti, B. Spagnolo, M. Bier, and E. Gudowska-Nowak, Stepping molecular motor amid Lévy white noise, Phys. Rev. E 91(4), 042713 (2015)

    Article  ADS  Google Scholar 

  56. Y. Xie and R. N. Liu, Stochastic resonance in overdamped washboard potential system, Acta Physica Sinica 66(12), 120501 (2017) (in Chinese)

    Article  Google Scholar 

  57. R. N. Liu and R. M. Kang, Stochastic resonance in under-damped periodic potential systems with alpha stable Lévy noise, Phys. Lett. A 382(25), 1656 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  58. M. Borromeo and F. Marchesoni, Brownian surfers, Phys. Lett. A 249(3), 199 (1998)

    Article  ADS  Google Scholar 

  59. A. Fiasconaro and B. Spagnolo, Resonant activation in piecewise linear asymmetric potentials, Phys. Rev. E 83(4), 041122 (2011)

    Article  ADS  Google Scholar 

  60. J. M. Chambers, C. L. Mallows, and B. W. Stuck, A method for simulating stable random variables, J. Am. Stat. Assoc. 71(354), 340 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  61. D. Fulger, E. Scalas, and G. Germano, Monte Carlo simulation of uncoupled continuous-time random walks yielding a stochastic solution of the space-time fractional diffusion equation, Phys. Rev. E 77(2), 021122 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Project of Beijing Institute of Graphic Communication, Beijing, China (No. Ea201702), the International Ability Improvement Project of Teaching Staff of Beijing Institute of Graphic Communication, Beijing, China (No. 12000400001), the National Natural Science Foundation of China (Grant No. 11875135), Quanzhou Scientific and Technological Foundation (No. 2018C085R), and the Innovation Teams in Functional Materials and Structural Mechanics of Hebei University of Architecture (No. TD202011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Gang Zheng.

Additional information

arXiv: 2103.09109. This article can also be found at http://journal.hep.com.cn/fop/EN/10.1007/s11467-021-1057-x.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, WX., Li, CP., Song, YL. et al. Rotation-translation coupling of a double-headed Brownian motor in a traveling-wave potential. Front. Phys. 16, 31500 (2021). https://doi.org/10.1007/s11467-021-1057-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-021-1057-x

Keywords

Navigation