Skip to main content
Log in

Structure search of two-dimensional systems using CALYPSO methodology

  • Topical Review
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

The dimensionality of structures allows materials to be classified into zero-, one-, two-, and three-dimensional systems. Two-dimensional (2D) systems have attracted a great deal of attention and typically include surfaces, interfaces, and layered materials. Due to their varied properties, 2D systems hold promise for applications such as electronics, optoelectronics, magnetronics, and valleytronics. The design of 2D systems is an area of intensive research because of the rapid development of ab initio structure-searching methods. In this paper, we highlight recent research progress on accelerating the design of 2D systems using the CALYPSO methodology. Challenges and perspectives for future developments in 2D structure prediction methods are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Novoselov, Electric field effect in atomically thin carbon films, Science 306(5696), 666 (2004)

    ADS  Google Scholar 

  2. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81(1), 109 (2009)

    ADS  Google Scholar 

  3. J. Wang, S. Deng, Z. Liu, and Z. Liu, The rare two-dimensional materials with Dirac cones, Natl. Sci. Rev. 2(1), 22 (2015)

    Google Scholar 

  4. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature 438(7065), 197 (2005)

    ADS  Google Scholar 

  5. Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature 438(7065), 201 (2005)

    ADS  Google Scholar 

  6. Z. T. Wang, Y. Chen, C. J. Zhao, H. Zhang, and S. C. Wen, Switchable dual-wavelength synchronously Q-switched erbium-doped fiber laser based on graphene saturable absorber, IEEE Photonics J. 4(3), 869 (2012)

    ADS  Google Scholar 

  7. F. Maier, M. Riedel, B. Mantel, J. Ristein, and L. Ley, Origin of surface conductivity in diamond, Phys. Rev. Lett. 85(16), 3472 (2000)

    ADS  Google Scholar 

  8. A. Ohtomo and H. Y. Hwang, A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface, Nature 427(6973), 423 (2004)

    ADS  Google Scholar 

  9. J. P. Buban, Grain boundary strengthening in alumina by rare earth impurities, Science 311(5758), 212 (2006)

    ADS  Google Scholar 

  10. A. R. Oganov, and C. W. Glass, Crystal structure prediction using ab initio evolutionary techniques: Principles and applications, J. Chem. Phys. 124(24), 244704 (2006)

    ADS  Google Scholar 

  11. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Optimization by simulated annealing, Science 220(4598), 671 (1983)

    ADS  MathSciNet  MATH  Google Scholar 

  12. S. Goedecker, Minima hopping: An efficient search method for the global minimum of the potential energy surface of complex molecular systems, J. Chem. Phys. 120(21), 9911 (2004)

    ADS  Google Scholar 

  13. D. J. Wales and J. P. K. Doye, Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms, J. Phys. Chem. A 101(28), 5111 (1997)

    Google Scholar 

  14. R. Martoňák, A. Laio, and M. Parrinello, Predicting crystal structures: The Parrinello-Rahman method revisited, Phys. Rev. Lett. 90(7), 075503 (2003)

    ADS  Google Scholar 

  15. C. J. Pickard and R. J. Needs, Ab initio random structure searching, J. Phys.: Condens. Matter 23(5), 053201 (2011)

    ADS  Google Scholar 

  16. D. C. Lonie and E. Zurek, XtalOpt: An open-source evolutionary algorithm for crystal structure prediction, Comput. Phys. Commun. 182(2), 372 (2011)

    ADS  MATH  Google Scholar 

  17. A. N. Kolmogorov, S. Shah, E. R. Margine, A. F. Bialon, T. Hammerschmidt, and R. Drautz, New superconducting and semiconducting Fe-B compounds predicted with an ab initio evolutionary search, Phys. Rev. Lett. 105(21), 217003 (2010)

    ADS  Google Scholar 

  18. G. Trimarchi and A. Zunger, Global space-group optimization problem: Finding the stablest crystal structure without constraints, Phys. Rev. B 75(10), 104113 (2007)

    ADS  Google Scholar 

  19. S. Bahmann and J. Kortus, EVO — Evolutionary algorithm for crystal structure prediction, Comput. Phys. Commun. 184(6), 1618 (2013)

    ADS  Google Scholar 

  20. W. Bi, Y. Meng, R. S. Kumar, A. L. Cornelius, W. W. Tipton, R. G. Hennig, Y. Zhang, C. Chen, and J. S. Schilling, Pressure-induced structural transitions in europium to 92 GPa, Phys. Rev. B 83(10), 104106 (2011)

    ADS  Google Scholar 

  21. S. T. Call, D. Y. Zubarev, and A. I. Boldyrev, Global minimum structure searches via particle swarm optimization, J. Comput. Chem. 28(7), 1177 (2007)

    Google Scholar 

  22. Y. Wang, J. Lv, L. Zhu, and Y. Ma, CALYPSO: A method for crystal structure prediction, Comput. Phys. Commun. 183(10), 2063 (2012)

    ADS  Google Scholar 

  23. Y. Wang, J. Lv, L. Zhu, and Y. Ma, Crystal structure prediction via particle-swarm optimization, Phys. Rev. B 82(9), 094116 (2010)

    ADS  Google Scholar 

  24. J. Chen, G. Schusteritsch, C. J. Pickard, C. G. Salzmann, and A. Michaelides, Two dimensional ice from first principles: Structures and phase transitions, Phys. Rev. Lett. 116(2), 025501 (2016)

    ADS  Google Scholar 

  25. K. A. Tikhomirova, C. Tantardini, E. V. Sukhanova, Z. I. Popov, S. A. Evlashin, M. A. Tarkhov, V. L. Zhdanov, A. A. Dudin, A. R. Oganov, D. G. Kvashnin, and A. G. Kvashnin, Exotic two-dimensional structure: The first case of hexagonal NaCl, J. Phys. Chem. Lett. 11(10), 3821 (2020)

    Google Scholar 

  26. Z. Zhu, X. Cai, S. Yi, J. Chen, Y. Dai, C. Niu, Z. Guo, M. Xie, F. Liu, J. H. Cho, Y. Jia, and Z. Zhang, Multivalency-driven formation of Te-based monolayer materials: A combined first-principles and experimental study, Phys. Rev. Lett. 119(10), 106101 (2017)

    ADS  Google Scholar 

  27. Y. Wang, M. Miao, J. Lv, L. Zhu, K. Yin, H. Liu, and Y. Ma, An effective structure prediction method for layered materials based on 2D particle swarm optimization algorithm, J. Chem. Phys. 137(22), 224108 (2012)

    ADS  Google Scholar 

  28. X. Luo, J. Yang, H. Liu, X. Wu, Y. Wang, Y. Ma, S. H. Wei, X. Gong, and H. Xiang, Predicting two-dimensional boron-carbon compounds by the global optimization method, J. Am. Chem. Soc. 133(40), 16285 (2011)

    Google Scholar 

  29. B. Gao, X. Shao, J. Lv, Y. Wang, and Y. Ma, Structure prediction of atoms adsorbed on two-dimensional layer materials: Method and applications, J. Phys. Chem. C 119(34), 20111 (2015)

    Google Scholar 

  30. S. Lu, Y. Wang, H. Liu, M. S. Miao, and Y. Ma, Self-assembled ultrathin nanotubes on diamond (100) surface, Nat. Commun. 5(1), 3666 (2014)

    ADS  Google Scholar 

  31. B. Gao, P. Gao, S. Lu, J. Lv, Y. Wang, and Y. Ma, Interface structure prediction via CALYPSO method, Sci. Bull. (Beijing) 64(5), 301 (2019)

    ADS  Google Scholar 

  32. J. Lv, Y. Wang, L. Zhu, and Y. Ma, Particle-swarm structure prediction on clusters, J. Chem. Phys. 137(8), 084104 (2012)

    ADS  Google Scholar 

  33. K. Yin, P. Gao, X. Shao, B. Gao, H. Liu, J. Lv, J. S. Tse, Y. Wang, and Y. Ma, An automated predictor for identifying transition states in solids, npj Comput. Mater. 6(1), 16 (2020)

    ADS  Google Scholar 

  34. P. Gao, Q. Tong, J. Lv, Y. Wang, and Y. Ma, X-ray diffraction data-assisted structure searches, Comput. Phys. Commun. 213, 40 (2017)

    ADS  Google Scholar 

  35. Y. Zhang, H. Wang, Y. Wang, L. Zhang, and Y. Ma, Computer-assisted inverse design of inorganic electrides, Phys. Rev. X 7(1), 011017 (2017)

    Google Scholar 

  36. X. Zhang, Y. Wang, J. Lv, C. Zhu, Q. Li, M. Zhang, Q. Li, and Y. Ma, First-principles structural design of superhard materials, J. Chem. Phys. 138(11), 114101 (2013)

    ADS  Google Scholar 

  37. H. Wang, Y. Wang, J. Lv, Q. Li, L. Zhang, and Y. Ma, CALYPSO structure prediction method and its wide application, Comput. Mater. Sci. 112, 406 (2016)

    Google Scholar 

  38. Y. Wang, J. Lv, L. Zhu, S. Lu, K. Yin, Q. Li, H. Wang, L. Zhang, and Y. Ma, Materials discovery via CALYPSO methodology, J. Phys.: Condens. Matter 27(20), 203203 (2015)

    ADS  Google Scholar 

  39. Q. Tong, J. Lv, P. Gao, and Y. Wang, The CALYPSO methodology for structure prediction, Chin. Phys. B 28(10), 106105 (2019)

    ADS  Google Scholar 

  40. C. Tang, G. Kour, and A. Du, Recent progress on the prediction of two-dimensional materials using CALYPSO, Chin. Phys. B 28(10), 107306 (2019)

    ADS  Google Scholar 

  41. L. C. Xu, R. Z. Wang, M. S. Miao, X. L. Wei, Y. P. Chen, H. Yan, W. M. Lau, L. M. Liu, and Y. M. Ma, Two dimensional Dirac carbon allotropes from graphene, Nanoscale 6(2), 1113 (2014)

    ADS  Google Scholar 

  42. F. Ma, Y. Jiao, G. Gao, Y. Gu, A. Bilic, Z. Chen, and A. Du, Graphene-like two-dimensional ionic boron with double Dirac cones at ambient condition, Nano Lett. 16(5), 3022 (2016)

    ADS  Google Scholar 

  43. M. Xu, G. Zhan, S. Liu, D. Zhang, X. Zhong, Z. Qu, Y. Li, A. Du, H. Zhang, and Y. Wang, PT-symmetry-protected Dirac states in strain-induced hidden MoS2 monolayer, Phys. Rev. B 100(23), 235435 (2019)

    ADS  Google Scholar 

  44. X. Tang, W. Sun, C. Lu, L. Kou, and C. Chen, Atomically thin NiB6 monolayer: A robust Dirac material, Phys. Chem. Chem. Phys. 21(2), 617 (2019)

    Google Scholar 

  45. X. Li and Q. Wang, Prediction of a BeP2 monolayer with a compression-induced Dirac semimetal state, Phys. Rev. B 97(8), 085418 (2018)

    ADS  Google Scholar 

  46. P. Zhou, Z. S. Ma, and L. Z. Sun, Coexistence of open and closed type nodal line topological semimetals in two dimensional B2C, J. Mater. Chem. C 6(5), 1206 (2018)

    Google Scholar 

  47. F. Ma, G. Gao, Y. Jiao, Y. Gu, A. Bilic, H. Zhang, Z. Chen, and A. Du, Predicting a new phase (T″) of two-dimensional transition metal di-chalcogenides and strain-controlled topological phase transition, Nanoscale 8(9), 4969 (2016)

    ADS  Google Scholar 

  48. Z. H. Cui, E. Jimenez-Izal, and A. N. Alexandrova, Prediction of two-dimensional phase of boron with anisotropic electric conductivity, J. Phys. Chem. Lett. 8(6), 1224 (2017)

    Google Scholar 

  49. Y. Ding and Y. Wang, Geometric and electronic structures of two-dimensional SiC3 compound, J. Phys. Chem. C 118(8), 4509 (2014)

    Google Scholar 

  50. H. Zhang, Y. Li, J. Hou, A. Du, and Z. Chen, Dirac state in the FeB2 monolayer with graphene-like boron sheet, Nano Lett. 16(10), 6124 (2016)

    ADS  Google Scholar 

  51. B. Wang, S. Yuan, Y. Li, L. Shi, and J. Wang, A new Dirac cone material: A graphene-like Be3C2 monolayer, Nanoscale 9(17), 5577 (2017)

    Google Scholar 

  52. P. F. Liu, L. Zhou, S. Tretiak, and L. M. Wu, Two-dimensional hexagonal M3C2 (M = Zn, Cd and Hg) monolayers: Novel quantum spin Hall insulators and Dirac cone materials, J. Mater. Chem. C 5(35), 9181 (2017)

    Google Scholar 

  53. J. Zhou and P. Jena, Two-dimensional topological crystalline quantum spin Hall effect in transition metal intercalated compounds, Phys. Rev. B 95(8), 081102 (2017)

    ADS  Google Scholar 

  54. H. Li, Y. Xu, X. Sun, and S. Wang, Mg3X2 (X = C, Si) monolayer in a honeycomb-Kagome lattice: A global minimum structure, J. Alloys Compd. 765, 969 (2018)

    Google Scholar 

  55. K. Jiang, A. Cui, S. Shao, J. Feng, H. Dong, B. Chen, Y. Wang, Z. Hu, and J. Chu, New pressure stabilization structure in two-dimensional PtSe2, J. Phys. Chem. Lett. 11(17), 7342 (2020)

    Google Scholar 

  56. C. Ding, G. Gong, Y. Liu, F. Zheng, Z. Zhang, H. Yang, Z. Li, Y. Xing, J. Ge, K. He, W. Li, P. Zhang, J. Wang, L. Wang, and Q. K. Xue, Signature of superconductivity in orthorhombic CoSb monolayer films on SrTiO3 (001), ACS Nano 13(9), 10434 (2019)

    Google Scholar 

  57. L. Yan, T. Bo, P. F. Liu, B. T. Wang, Y. G. Xiao, and M. H. Tang, Prediction of phonon-mediated superconductivity in two-dimensional Mo2B2, J. Mater. Chem. C 7(9), 2589 (2019)

    Google Scholar 

  58. T. Bo, P. F. Liu, L. Yan, and B. T. Wang, Electron-phonon coupling superconductivity in two-dimensional orthorhombic MB6 (M= Mg, Ca, Ti, Y) and hexagonal MB6 (M= Mg, Ca, Sc, Ti), Phys. Rev. Mater. 4(11), 114802 (2020)

    Google Scholar 

  59. D. Fan, S. Lu, Y. Guo, and X. Hu, Two-dimensional stoichiometric boron carbides with unexpected chemical bonding and promising electronic properties, J. Mater. Chem. C 6(7), 1651 (2018)

    Google Scholar 

  60. Z. Qu, S. Lin, M. Xu, J. Hao, J. Shi, W. Cui, and Y. Li, Prediction of strain-induced phonon-mediated superconductivity in monolayer YS, J. Mater. Chem. C 7(36), 11184 (2019)

    Google Scholar 

  61. L. Yan, T. Bo, W. Zhang, P. F. Liu, Z. Lu, Y. G. Xiao, M. H. Tang, and B. T. Wang, Novel structures of two-dimensional tungsten boride and their superconductivity, Phys. Chem. Chem. Phys. 21(28), 15327 (2019)

    Google Scholar 

  62. H. Li, Y. Hao, D. Sun, D. Zhou, G. Liu, H. Wang, and Q. Li, Mechanical properties and superconductivity in two-dimensional B2O under extreme strain, Phys. Chem. Chem. Phys. 21(46), 25859 (2019)

    Google Scholar 

  63. L. Yan, P. F. Liu, H. Li, Y. Tang, J. He, X. Huang, B. T. Wang, and L. Zhou, Theoretical dissection of superconductivity in two-dimensional honeycomb borophene oxide B2O crystal with a high stability, npj Comput. Mater. 6(1), 94 (2020)

    ADS  Google Scholar 

  64. L. Yan, T. Bo, P. F. Liu, L. Zhou, J. Zhang, M. H. Tang, Y. G. Xiao, and B. T. Wang, Superconductivity in predicted two dimensional XB6 (X = Ga, J. Mater. Chem. C 8(5), 1704 (2020)

    Google Scholar 

  65. F. Zheng, X. B. Li, P. Tan, Y. Lin, L. Xiong, X. Chen, and J. Feng, Emergent superconductivity in two-dimensional NiTe2 crystals, Phys. Rev. B 101(10), 100505 (2020)

    ADS  Google Scholar 

  66. Z. Qu, F. Han, T. Yu, M. Xu, Y. Li, and G. Yang, Boron Kagome-layer induced intrinsic superconductivity in a MnB3 monolayer with a high critical temperature, Phys. Rev. B 102(7), 075431 (2020)

    ADS  Google Scholar 

  67. D. Fan, S. Lu, C. Chen, M. Jiang, X. Li, and X. Hu, Versatile two-dimensional boron monosulfide polymorphs with tunable bandgaps and superconducting properties, Appl. Phys. Lett. 117(1), 013103 (2020)

    ADS  Google Scholar 

  68. Y. Li, Y. Liao, and Z. Chen, Be2C monolayer with quasi-planar hexacoordinate carbons: A global minimum structure, Angew. Chem. 126(28), 7376 (2014)

    ADS  Google Scholar 

  69. L. M. Yang, V. Bačić, I. A. Popov, A. I. Boldyrev, T. Heine, T. Frauenheim, and E. Ganz, Two-dimensional Cu2Si monolayer with planar hexacoordinate copper and silicon bonding, J. Am. Chem. Soc. 137(7), 2757 (2015)

    Google Scholar 

  70. H. Zhang, Y. Li, J. Hou, K. Tu, and Z. Chen, FeB6 monolayers: The graphene-like material with hypercoordinate transition metal, J. Am. Chem. Soc. 138(17), 5644 (2016)

    Google Scholar 

  71. X. Qu, J. Yang, Y. Wang, J. Lv, Z. Chen, and Y. Ma, A two-dimensional TiB4 monolayer exhibits planar octacoordinate Ti, Nanoscale 9(45), 17983 (2017)

    Google Scholar 

  72. Y. Wang, M. Qiao, Y. Li, and Z. Chen, A two-dimensional CaSi monolayer with quasi-planar pentacoordinate silicon, Nanoscale Horiz. 3(3), 327 (2018)

    ADS  Google Scholar 

  73. L. Meng, Y. Zhang, J. Zhang, and W. Wu, Completely flat 2D Zn3O2 monolayer with triangle and pentangle coordinated networks, J. Phys.: Condens. Matter 30(9), 095301 (2018)

    ADS  Google Scholar 

  74. Y. Wang, F. Li, Y. Li, and Z. Chen, Semi-metallic Be5C2 monolayer global minimum with quasi-planar pentacoordinate carbons and negative Poisson’s ratio, Nat. Commun. 7(1), 11488 (2016)

    ADS  Google Scholar 

  75. C. Zhu, H. Lv, X. Qu, M. Zhang, J. Wang, S. Wen, Q. Li, Y. Geng, Z. Su, X. Wu, Y. Li, and Y. Ma, TMC (TM = Co, Ni, and Cu) monolayers with planar pentacoordinate carbon and their potential applications, J. Mater. Chem. C 7(21), 6406 (2019)

    Google Scholar 

  76. D. Fan, C. Chen, S. Lu, X. Li, M. Jiang, and X. Hu, Highly stable two-dimensional iron monocarbide with planar hypercoordinate moiety and superior Li-ion storage performance, ACS Appl. Mater. Interfaces 12(27), 30297 (2020)

    Google Scholar 

  77. C. Tang, K. K. Ostrikov, S. Sanvito, and A. Du, Prediction of room-temperature ferromagnetism and large perpendicular magnetic anisotropy in a planar hypercoordinate FeB3 monolayer, Nanoscale Horiz. 6(1), 43 (2021)

    ADS  Google Scholar 

  78. T. Yu, S. Zhang, F. Li, Z. Zhao, L. Liu, H. Xu, and G. Yang, Stable and metallic two-dimensional TaC2 as an anode material for lithium-ion battery, J. Mater. Chem. A 5(35), 18698 (2017)

    Google Scholar 

  79. S. Jana, S. Thomas, C. H. Lee, B. Jun, and S. U. Lee, B3S monolayer: Prediction of a high-performance anode material for lithium-ion batteries, J. Mater. Chem. A 7(20), 12706 (2019)

    Google Scholar 

  80. G. Yuan, T. Bo, X. Qi, P.-F. Liu, Z. Huang, and B.-T. Wang, Monolayer Zr2B2: A promising two-dimensional anode material for Li-ion batteries, Appl. Surf. Sci. 480, 448 (2019)

    ADS  Google Scholar 

  81. T. Bo, P. F. Liu, J. Zhang, F. Wang, and B. T. Wang, Tetragonal and trigonal Mo2B2 monolayers: Two new low-dimensional materials for Li-ion and Na-ion batteries, Phys. Chem. Chem. Phys. 21(9), 5178 (2019)

    Google Scholar 

  82. Y. Y. Wu, T. Bo, J. Zhang, Z. Lu, Z. Wang, Y. Li, and B. T. Wang, Novel two-dimensional tetragonal vanadium carbides and nitrides as promising materials for Li-ion batteries, Phys. Chem. Chem. Phys. 21(35), 19513 (2019)

    Google Scholar 

  83. Y. Guo, T. Bo, Y. Wu, J. Zhang, Z. Lu, W. Li, X. Li, P. Zhang, and B. Wang, YS2 monolayer as a high-efficient anode material for rechargeable Li-ion and Na-ion batteries, Solid State Ionics 345, 115187 (2020)

    Google Scholar 

  84. X. H. Cai, Q. Yang, S. Zheng, and M. Wang, Net-C18: A predicted two-dimensional planar carbon allotrope and potential for an anode in lithium-ion battery, Energy Environ. Mater. 4, 458 (2021)

    Google Scholar 

  85. G. Guo, R. Wang, S. Luo, B. Ming, C. Wang, M. Zhang, Y. Zhang, and H. Yan, Metallic two-dimensional C3N allotropes with electron and ion channels for highperformance Li-ion battery anode materials, Appl. Surf. Sci. 518, 146254 (2020)

    Google Scholar 

  86. D. Li, Two-dimensional C5678: A promising carbon-based high-performance lithium-ion battery anode, Mater. Adv. 2(1), 398 (2021)

    Google Scholar 

  87. C. Kou, Y. Tian, M. Zhang, E. Zurek, X. Qu, X. Wang, K. Yin, Y. Yan, L. Gao, M. Lu, and W. Yang, M-graphene: A metastable two-dimensional carbon allotrope, 2D Mater. 7(2), (2020)

  88. X. Li, Q. Wang, and P. Jena, ψ-graphene: A new metallic allotrope of planar carbon with potential applications as anode materials for lithium-ion batteries, J. Phys. Chem. Lett. 8(14), 3234 (2017)

    Google Scholar 

  89. T. Yu, Z. Zhao, L. Liu, S. Zhang, H. Xu, and G. Yang, TiC3 monolayer with high specific capacity for sodium-ion batteries, J. Am. Chem. Soc. 140(18), 5962 (2018)

    Google Scholar 

  90. A. Byeon, M. Q. Zhao, C. E. Ren, J. Halim, S. Kota, P. Urbankowski, B. Anasori, M. W. Barsoum, and Y. Gogotsi, Two-dimensional titanium carbide MXene as a cathode material for hybrid magnesium/lithium-ion batteries, ACS Appl. Mater. Interfaces 9(5), 4296 (2017)

    Google Scholar 

  91. Z. Zhao, T. Yu, S. Zhang, H. Xu, G. Yang, and Y. Liu, Metallic P3C monolayer as anode for sodium-ion batteries, J. Mater. Chem. A 7(1), 405 (2019)

    Google Scholar 

  92. T. Li, C. He, and W. Zhang, A novel porous C4N4 monolayer as a potential anchoring material for lithium-sulfur battery design, J. Mater. Chem. A 7(8), 4134 (2019)

    Google Scholar 

  93. Y. Yu, Z. Guo, Q. Peng, J. Zhou, and Z. Sun, Novel two-dimensional molybdenum carbides as high capacity anodes for lithium/sodium-ion batteries, J. Mater. Chem. A 7(19), 12145 (2019)

    Google Scholar 

  94. H. Huang, H. H. Wu, C. Chi, B. Huang, and T. Y. Zhang, Ab initio investigations of orthogonal ScC2 and ScN2 monolayers as promising anode materials for sodium-ion batteries, J. Mater. Chem. A 7(15), 8897 (2019)

    Google Scholar 

  95. C. Zhu, X. Qu, M. Zhang, J. Wang, Q. Li, Y. Geng, Y. Ma, and Z. Su, Planar NiC3 as a reversible anode material with high storage capacity for lithium-ion and sodium-ion batteries, J. Mater. Chem. A 7(21), 13356 (2019)

    Google Scholar 

  96. Y. Wang, Y. Li, and Z. Chen, Not your familiar two dimensional transition metal disulfide: Structural and electronic properties of the PdS2 monolayer, J. Mater. Chem. C 3(37), 9603 (2015)

    Google Scholar 

  97. C. Zhang and Q. Sun, A honeycomb BeN2 sheet with a desirable direct band gap and high carrier mobility, J. Phys. Chem. Lett. 7(14), 2664 (2016)

    Google Scholar 

  98. X. Li, S. Zhang, C. Zhang, and Q. Wang, Stabilizing benzene-like planar N6 rings to form a single atomic honeycomb BeN3 sheet with high carrier mobility, Nanoscale 10(3), 949 (2018)

    Google Scholar 

  99. Q. Wu, W. W. Xu, L. Ma, J. Wang, and X. C. Zeng, Two-dimensional AuMX2 (M = Al, Ga, In; X = S, Se) monolayers featuring intracrystalline aurophilic interactions with novel electronic and optical properties, ACS Appl. Mater. Interfaces 10(19), 16739 (2018)

    Google Scholar 

  100. L. B. Meng, S. Ni, Y. J. Zhang, B. Li, X. W. Zhou, and W. D. Wu, Two-dimensional zigzag-shaped Cd2C monolayer with a desirable bandgap and high carrier mobility, J. Mater. Chem. C 6(34), 9175 (2018)

    Google Scholar 

  101. K. Zhao, X. Li, S. Wang, and Q. Wang, 2D planar penta-MN2 (M = Pd, Pt) sheets identified through structure search, Phys. Chem. Chem. Phys. 21(1), 246 (2019)

    Google Scholar 

  102. Q. Wu, W. W. Xu, D. Lin, J. Wang, and X. C. Zeng, Two-dimensional gold sulfide monolayers with direct band gap and ultrahigh electron mobility, J. Phys. Chem. Lett. 10(13), 3773 (2019)

    Google Scholar 

  103. C. Tang, F. Ma, C. Zhang, Y. Jiao, S. K. Matta, K. Ostrikov, and A. Du, 2D boron dichalcogenides from the substitution of Mo with ionic B2 pair in MoX2 (X = S, Se and Te): High stability, large excitonic effect and high charge carrier mobility, J. Mater. Chem. C 7(6), 1651 (2019)

    Google Scholar 

  104. W. Yi, X. Chen, Z. Wang, Y. Ding, B. Yang, and X. Liu, A novel two-dimensional δ-InP3 monolayer with high stability, tunable bandgap, high carrier mobility, and gas sensing of NO2, J. Mater. Chem. C 7(24), 7352 (2019)

    Google Scholar 

  105. C. Pu, J. Yu, R. Yu, X. Tang, and D. Zhou, Hydrogenated PtP2 monolayer: Theoretical predictions on the structure and charge carrier mobility, J. Mater. Chem. C 7(39), 12231 (2019)

    Google Scholar 

  106. H. Zhang, X. Li, X. Meng, S. Zhou, G. Yang, and X. Zhou, Isoelectronic analogues of graphene: The BCN monolayers with visible-light absorption and high carrier mobility, J. Phys.: Condens. Matter 31(12), 125301 (2019)

    ADS  Google Scholar 

  107. Y. Qian, H. Wu, E. Kan, and K. Deng, Graphene-like quaternary compound SiBCN: A new wide direct band gap semiconductor predicted by a first-principles study, EPL 118(1), 17002 (2017)

    ADS  Google Scholar 

  108. G. Wang, R. Pandey, and S. P. Karna, Carbon phosphide monolayers with superior carrier mobility, Nanoscale 8(16), 8819 (2016)

    ADS  Google Scholar 

  109. X. Chen, D. Wang, X. Liu, L. Li, and B. Sanyal, Two-dimensional square-A2B (A = Cu, Ag, Au, and B = S, Se): Auxetic semiconductors with high carrier mobilities and unusually low lattice thermal conductivities, J. Phys. Chem. Lett. 11(8), 2925 (2020)

    Google Scholar 

  110. C. Wang, T. Yu, A. Bergara, X. Du, F. Li, and G. Yang, Anisotropic PC6N monolayer with wide band gap and ultrahigh carrier mobility, J. Phys. Chem. C 124(7), 4330 (2020)

    Google Scholar 

  111. Y. Sun, B. Xu, and L. Yi, HfN2 monolayer: A new direct-gap semiconductor with high and anisotropic carrier mobility, Chin. Phys. B 29(2), 023102 (2020)

    ADS  Google Scholar 

  112. Y. M. Dou, C. W. Zhang, P. Li, and P. J. Wang, SnxPy monolayers: A new type of two-dimensional materials with high stability, carrier mobility, and magnetic properties, Nanoscale Res. Lett. 15(1), 155 (2020)

    ADS  Google Scholar 

  113. D. Liang, T. Jing, D. Mingsen, and S. Cai, Two-dimensional ScN with high carrier mobility and unexpected mechanical properties, Nanotechnology 32(15), 155201 (2021)

    ADS  Google Scholar 

  114. L. Shao, X. Duan, Y. Li, F. Zeng, H. Ye, and P. Ding, Two-dimensional Ga2O2 monolayer with tunable band gap and high hole mobility, Phys. Chem. Chem. Phys. 23(1), 666 (2021)

    Google Scholar 

  115. Q. Wu, W. W. Xu, B. Qu, L. Ma, X. Niu, J. Wang, and X. C. Zeng, Au6S2 monolayer sheets: Metallic and semiconducting polymorphs, Mater. Horiz. 4(6), 1085 (2017)

    Google Scholar 

  116. C. S. Liu, H. H. Zhu, X. J. Ye, and X. H. Yan, Prediction of a new BeC monolayer with perfectly planar tetracoordinate carbons, Nanoscale 9(18), 5854 (2017)

    Google Scholar 

  117. F. Shojaei and H. S. Kang, Partially Planar BP3 with High Electron Mobility as a Phosphorene Analog, J. Mater. Chem. C 5(43), 11267 (2017)

    Google Scholar 

  118. F. Li, Y. Wang, H. Wu, Z. Liu, U. Aeberhard, and Y. Li, Benzene-like N6 rings in a Be2N6 monolayer: A stable 2D semiconductor with high carrier mobility, J. Mater. Chem. C 5(44), 11515 (2017)

    Google Scholar 

  119. L. Zhao, W. Yi, J. Botana, F. Gu, and M. Miao, Nitrophosphorene: A 2D semiconductor with both large direct gap and superior mobility, J. Phys. Chem. C 121(51), 28520 (2017)

    Google Scholar 

  120. Y. Guo, L. Ma, K. Mao, M. Ju, Y. Bai, J. Zhao, and X. C. Zeng, Eighteen functional monolayer metal oxides: Wide bandgap semiconductors with superior oxidation resistance and ultrahigh carrier mobility, Nanoscale Horiz. 4(3), 592 (2019)

    ADS  Google Scholar 

  121. Y. Guo, Q. Wu, Y. Li, N. Lu, K. Mao, Y. Bai, J. Zhao, J. Wang, and X. C. Zeng, Copper(i) sulfide: A two-dimensional semiconductor with superior oxidation resistance and high carrier mobility, Nanoscale Horiz. 4(1), 223 (2019)

    ADS  Google Scholar 

  122. H. Xiao, X. Wang, R. Wang, L. Xu, S. Liang, and C. Yang, Intrinsic magnetism and biaxial strain tuning in two-dimensional metal halides V3X8 (X = F, Cl, Br, I) from first principles and Monte Carlo simulation, Phys. Chem. Chem. Phys. 21(22), 11731 (2019)

    Google Scholar 

  123. J. Sun, X. Zhong, W. Cui, J. Shi, J. Hao, M. Xu, and Y. Li, The intrinsic magnetism, quantum anomalous Hall effect and Curie temperature in 2D transition metal trihalides, Phys. Chem. Chem. Phys. 22(4), 2429 (2020)

    Google Scholar 

  124. Y. Jiao, W. Wu, F. Ma, Z. M. Yu, Y. Lu, X. L. Sheng, Y. Zhang, and S. A. Yang, Room temperature ferromagnetism and antiferromagnetism in two-dimensional iron arsenides, Nanoscale 11(35), 16508 (2019)

    Google Scholar 

  125. L. Zhang, G. Shi, B. Peng, P. Gao, L. Chen, N. Zhong, L. Mu, L. Zhang, P. Zhang, L. Gou, Y. Zhao, S. Liang, J. Jiang, Z. Zhang, H. Ren, X. Lei, R. Yi, Y. Qiu, Y. Zhang, X. Liu, M. Wu, L. Yan, C. Duan, S. Zhang, and H. Fang, Novel 2D CaCl crystals with metallicity, room-temperature ferromagnetism, heterojunction, piezoelectricity-like property, and monovalent calcium ions, Natl. Sci. Rev. 8(7), nwaa274 (2020)

    Google Scholar 

  126. Z. Guan, and S. Ni, Strain-controllable high curie temperature, large valley polarization, and magnetic crystal anisotropy in a 2D ferromagnetic Janus VSeTe monolayer, ACS Appl. Mater. Interfaces 12(47), 53067 (2020)

    Google Scholar 

  127. Z. Guan and S. Ni, Predicted 2D ferromagnetic Janus VSeTe monolayer with high curie temperature, large valley polarization and magnetic crystal anisotropy, Nanoscale 12(44), 22735 (2020)

    Google Scholar 

  128. C. Zhang, Y. Nie, S. Sanvito, and A. Du, First-principles prediction of a room-temperature ferromagnetic Janus VSSe monolayer with piezoelectricity, ferroelasticity, and large valley polarization, Nano Lett. 19(2), 1366 (2019)

    ADS  Google Scholar 

  129. S. Zheng, C. Huang, T. Yu, M. Xu, S. Zhang, H. Xu, Y. Liu, E. Kan, Y. Wang, and G. Yang, High-temperature ferromagnetism in an Fe3P monolayer with a large magnetic anisotropy, J. Phys. Chem. Lett. 10(11), 2733 (2019)

    Google Scholar 

  130. B. Wang, Y. Zhang, L. Ma, Q. Wu, Y. Guo, X. Zhang, and J. Wang, MnX (X = P, As) monolayers: A new type of two-dimensional intrinsic room temperature ferromagnetic half-metallic material with large magnetic anisotropy, Nanoscale 11(10), 4204 (2019)

    Google Scholar 

  131. H. Pan, Y. Han, J. Li, H. Zhang, Y. Du, and N. Tang, Half-metallicity in a honeycomb-Kagome-lattice Mg3C2 monolayer with carrier doping, Phys. Chem. Chem. Phys. 20(20), 14166 (2018)

    Google Scholar 

  132. M. Xu, X. Zhong, J. Lv, W. Cui, J. Shi, V. Kanchana, G. Vaitheeswaran, J. Hao, Y. Wang, and Y. Li, Ti-fractioninduced electronic and magnetic transformations in titanium oxide films, J. Chem. Phys. 150(15), 154704 (2019)

    ADS  Google Scholar 

  133. W. Luo, K. Xu, and H. Xiang, Two-dimensional hyperferroelectric metals: A different route to ferromagnetic-ferroelectric multiferroics, Phys. Rev. B 96(23), 235415 (2017)

    ADS  Google Scholar 

  134. P. Li, W. Zhang, D. Li, C. Liang, and X. C. Zeng, Multifunctional binary monolayers GexPy: Tunable band gap, ferromagnetism, and photocatalyst for water splitting, ACS Appl. Mater. Interfaces 10(23), 19897 (2018)

    Google Scholar 

  135. Y. Gao, M. Wu, and X. C. Zeng, Phase transitions and ferroelasticity-multiferroicity in bulk and two-dimensional silver and copper monohalides, Nanoscale Horiz. 4(5), 1106 (2019)

    ADS  Google Scholar 

  136. M. Xu, C. Huang, Y. Li, S. Liu, X. Zhong, P. Jena, E. Kan, and Y. Wang, Electrical control of magnetic phase transition in a type-I multiferroic double-metal trihalide monolayer, Phys. Rev. Lett. 124(6), 067602 (2020)

    ADS  Google Scholar 

  137. H. Wang, X. Li, J. Sun, Z. Liu, and J. Yang, BP5 monolayer with multiferroicity and negative Poisson’s ratio: A prediction by global optimization method, 2D Mater. 4(4), 045020 (2017)

    Google Scholar 

  138. B. Wang, H. Gao, Q. Lu, W. Xie, Y. Ge, Y. H. Zhao, K. Zhang, and Y. Liu, Type-I and type-II nodal lines coexistence in the antiferromagnetic monolayer CrAs2, Phys. Rev. B 98(11), 115164 (2018)

    ADS  Google Scholar 

  139. L. Hu, X. Wu, and J. Yang, Mn2C monolayer: A 2D antiferromagnetic metal with high Néel temperature and large spin-orbit coupling, Nanoscale 8(26), 12939 (2016)

    ADS  Google Scholar 

  140. S. Zhang, Y. Li, T. Zhao, and Q. Wang, Robust ferromagnetism in monolayer chromium nitride, Sci. Rep. 4(1), 5241 (2015)

    Google Scholar 

  141. Y. Zhang, J. Pang, M. Zhang, X. Gu, and L. Huang, Two-dimensional Co2S2 monolayer with robust ferromagnetism, Sci. Rep. 7(1), 15993 (2017)

    ADS  Google Scholar 

  142. C. Huang, J. Feng, F. Wu, D. Ahmed, B. Huang, H. Xiang, K. Deng, and E. Kan, Toward intrinsic room-temperature ferromagnetism in two-dimensional semiconductors, J. Am. Chem. Soc. 140(36), 11519 (2018)

    Google Scholar 

  143. Q. Wu, Y. Zhang, Q. Zhou, J. Wang, and X. C. Zeng, Transition-metal dihydride monolayers: A new family of two-dimensional ferromagnetic materials with intrinsic room-temperature half-metallicity, J. Phys. Chem. Lett. 9(15), 4260 (2018)

    Google Scholar 

  144. X. Tang, W. Sun, Y. Gu, C. Lu, L. Kou, and C. Chen, CoB6 Monolayer: A robust two-dimensional ferromagnet, Phys. Rev. B 99(4), 045445 (2019)

    ADS  Google Scholar 

  145. Y. Wang, F. Li, Y. Li, and Z. Chen, Semi-metallic Be5C2 monolayer global minimum with quasi-planar pentacoordinate carbons and negative Poisson’s ratio, Nat. Commun. 7(1), 11488 (2016)

    ADS  Google Scholar 

  146. Z. Gao, X. Dong, N. Li, and J. Ren, Novel two-dimensional silicon dioxide with in-plane negative Poisson’s ratio, Nano Lett. 17(2), 772 (2017)

    ADS  Google Scholar 

  147. L. Meng, Y. Zhang, M. Zhou, J. Zhang, X. Zhou, S. Ni, and W. Wu, Unique zigzag-shaped buckling Zn2C monolayer with strain-tunable band gap and negative Poisson ratio, Inorg. Chem. 57(4), 1958 (2018)

    Google Scholar 

  148. S. Liu, H. Du, G. Li, L. Li, X. Shi, and B. Liu, Two-dimensional carbon dioxide with high stability, a negative Poisson’s ratio and a huge band gap, Phys. Chem. Chem. Phys. 20(31), 20615 (2018)

    Google Scholar 

  149. C. Zhang, T. He, S. K. Matta, T. Liao, L. Kou, Z. Chen, and A. Du, Predicting novel 2D MB2 (M = Ti, Hf, V, Nb, Ta) monolayers with ultrafast Dirac transport channel and electron-orbital controlled negative Poisson’s ratio, J. Phys. Chem. Lett. 10(10), 2567 (2019)

    Google Scholar 

  150. B. Wang, Q. Wu, Y. Zhang, L. Ma, and J. Wang, Auxetic B4N monolayer: A promising 2D material with in-plane negative Poisson’s ratio and large anisotropic mechanics, ACS Appl. Mater. Interfaces 11(36), 33231 (2019)

    Google Scholar 

  151. H. Du, G. Li, J. Chen, Z. Lv, Y. Chen, and S. Liu, A novel SiO monolayer with a negative Poisson’s ratio and Dirac semimetal properties, Phys. Chem. Chem. Phys. 22(35), 20107 (2020)

    Google Scholar 

  152. J. Lv, M. Xu, S. Lin, X. Shao, X. Zhang, Y. Liu, Y. Wang, Z. Chen, and Y. Ma, Direct-gap semiconducting tri-layer silicene with 29% photovoltaic efficiency, Nano Energy 51(July), 489 (2018)

    Google Scholar 

  153. H. Zhang, Y. Liao, G. Yang, and X. Zhou, Theoretical studies on the electronic and optical properties of honeycomb BC3 monolayer: A promising candidate for metalfree photocatalysts, ACS Omega 3(9), 10517 (2018)

    Google Scholar 

  154. H. Wang, X. Li, Z. Liu, and J. Yang, ψ-phosphorene: A new allotrope of phosphorene, Phys. Chem. Chem. Phys. 19(3), 2402 (2017)

    Google Scholar 

  155. X. Fu, J. Guo, L. Li, and T. Dai, Structural and electronic properties of predicting two-dimensional BC2P and BC3P3 monolayers by the global optimization method, Chem. Phys. Lett. 726, 69 (2019)

    ADS  Google Scholar 

  156. J. Guan, L. Zhang, K. Deng, Y. Du, and E. Kan, Computational dissection of 2D SiC7 monolayer: A direct band gap semiconductor and high power conversion efficiency, Adv. Theory Simul. 2(8), 1900058 (2019)

    Google Scholar 

  157. C. Kou, Y. Tian, L. Gao, M. Lu, M. Zhang, H. Liu, D. Zhang, X. Cui, and W. Yang, Theoretical design of two-dimensional carbon nitrides, Nanotechnology 31(49), 495707 (2020)

    ADS  Google Scholar 

  158. H. Chang, K. Tu, X. Zhang, J. Zhao, X. Zhou, and H. Zhang, B4C3 monolayer with impressive electronic, optical, and mechanical properties: A potential metal-free photocatalyst for CO2 reduction under visible light, J. Phys. Chem. C 123(41), 25091 (2019)

    Google Scholar 

  159. Y. Ding, X. Nie, H. Dong, N. Rujisamphan, and Y. Li, Predicting a new graphene derivative C3H as potential photocatalyst for water splitting and CO2 reduction, Physica E 127, 114562 (2021)

    Google Scholar 

  160. J. Zhang, J. Ren, H. Fu, Z. Ding, H. Li, and S. Meng, Two-dimensional silicon-carbon hybrids with a honeycomb lattice: New family for two-dimensional photovoltaic materials, Sci. China Phys. Mech. Astron. 58(10), 106801 (2015)

    ADS  Google Scholar 

  161. D. Fan, S. Lu, Y. Guo, and X. Hu, Novel bonding patterns and optoelectronic properties of the two-dimensional SixCy monolayers, J. Mater. Chem. C5(14), 3561 (2017)

    Google Scholar 

  162. Y. Chen, Z. Lao, B. Sun, X. Feng, S. A. T. Redfern, H. Liu, J. Lv, H. Wang, and Z. Chen, Identifying the ground-state NP sheet through a global structure search in two-dimensional space and its promising high-efficiency photovoltaic properties, ACS Mater. Lett. 1(3), 375 (2019)

    Google Scholar 

  163. X. Cai, Y. Chen, B. Sun, J. Chen, H. Wang, Y. Ni, L. Tao, H. Wang, S. Zhu, X. Li, Y. Wang, J. Lv, X. Feng, S. A. T. Redfern, and Z. Chen, Two-dimensional blue-AsP monolayers with tunable direct band gap and ultrahigh carrier mobility show promising high-performance photovoltaic properties, Nanoscale 11(17), 8260 (2019)

    Google Scholar 

  164. W. Luo and H. Xiang, Two-dimensional phosphorus oxides as energy and information materials, Angew. Chem. Int. Ed. 55(30), 8575 (2016)

    Google Scholar 

  165. M. Zhang, G. Gao, A. Kutana, Y. Wang, X. Zou, J. S. Tse, B. I. Yakobson, H. Li, H. Liu, and Y. Ma, Two-dimensional boron-nitrogen-carbon monolayers with tunable direct band gaps, Nanoscale 7(28), 12023 (2015)

    ADS  Google Scholar 

  166. B. Huang, H. L. Zhuang, M. Yoon, B. G. Sumpter, and S. H. Wei, Highly stable two-dimensional silicon phosphides: Different stoichiometries and exotic electronic properties, Phys. Rev. B 91(12), 121401 (2015)

    ADS  Google Scholar 

  167. C. Zhang, J. Liu, H. Shen, X. Z. Li, and Q. Sun, Identifying the ground state geometry of a MoN2 sheet through a global structure search and its tunable P-electron half-metallicity, Chem. Mater. 29(20), 8588 (2017)

    Google Scholar 

  168. Y. Hu, S. S. Li, W. X. Ji, C. W. Zhang, M. Ding, P. J. Wang, and S. S. Yan, Glide mirror plane protected nodal-loop in an anisotropic half-metallic MnNF monolayer, J. Phys. Chem. Lett. 11(2), 485 (2020)

    Google Scholar 

  169. X. Wu, J. Dai, Y. Zhao, Z. Zhuo, J. Yang, and X. C. Zeng, Two-dimensional boron monolayer sheets, ACS Nano 6(8), 7443 (2012)

    ADS  Google Scholar 

  170. X. Yu, L. Li, X. W. Xu, and C. C. Tang, Prediction of two-dimensional boron sheets by particle swarm optimization algorithm, J. Phys. Chem. C 116(37), 20075 (2012)

    Google Scholar 

  171. B. Feng, J. Zhang, Q. Zhong, W. Li, S. Li, H. Li, P. Cheng, S. Meng, L. Chen, and K. Wu, Experimental realization of two-dimensional boron sheets, Nat. Chem. 8(6), 563 (2016)

    Google Scholar 

  172. S. Liu, B. Liu, X. Shi, J. Lv, S. Niu, M. Yao, Q. Li, R. Liu, T. Cui, and B. Liu, Two-dimensional penta-BP5 sheets: High-stability, strain-tunable electronic structure and excellent mechanical properties, Sci. Rep. 7(1), 2404 (2017)

    ADS  Google Scholar 

  173. W. Eerenstein, N. D. Mathur, and J. F. Scott, Multiferroic and magnetoelectric materials, Nature 442(7104), 759 (2006)

    ADS  Google Scholar 

  174. M. M. Vopson, Fundamentals of multiferroic materials and their possible applications, Crit. Rev. Solid State Mater. Sci. 40(4), 223 (2015)

    ADS  Google Scholar 

  175. L. Meng, Y. Wang, L. Zhang, S. Du, R. Wu, L. Li, Y. Zhang, G. Li, H. Zhou, W. A. Hofer, and H. J. Gao, Buckled silicene formation on Ir(111), Nano Lett. 13(2), 685 (2013)

    ADS  Google Scholar 

  176. B. Lalmi, H. Oughaddou, H. Enriquez, A. Kara, S. Vizzini, B. Ealet, and B. Aufray, Epitaxial growth of a silicene sheet, Appl. Phys. Lett. 97(22), 223109 (2010)

    ADS  Google Scholar 

  177. P. De Padova, P. Vogt, A. Resta, J. Avila, I. Razado-Colambo, C. Quaresima, C. Ottaviani, B. Olivieri, T. Bruhn, T. Hirahara, T. Shirai, S. Hasegawa, M. Carmen Asensio, and G. Le Lay, Evidence of Dirac fermions in multilayer silicene, Appl. Phys. Lett. 102(16), 163106 (2013)

    ADS  Google Scholar 

  178. B. Feng, Z. Ding, S. Meng, Y. Yao, X. He, P. Cheng, L. Chen, and K. Wu, Evidence of silicene in honeycomb structures of silicon on Ag(111), Nano Lett. 12(7), 3507 (2012)

    ADS  Google Scholar 

  179. A. Fleurence, R. Friedlein, T. Ozaki, H. Kawai, Y. Wang, and Y. Yamada-Takamura, Experimental evidence for epitaxial silicene on diboride thin films, Phys. Rev. Lett. 108(24), 245501 (2012)

    ADS  Google Scholar 

  180. B. Aufray, A. Kara, S. Vizzini, H. Oughaddou, C. Léandri, B. Ealet, and G. Le Lay, Graphene-like silicon nanoribbons on Ag(110): A possible formation of silicene, Appl. Phys. Lett. 96(18), 183102 (2010)

    ADS  Google Scholar 

  181. A. J. Mannix, B. Kiraly, B. L. Fisher, M. C. Hersam, and N. P. Guisinger, Silicon growth at the two-dimensional limit on Ag(111), ACS Nano 8(7), 7538 (2014)

    Google Scholar 

  182. P. De Padova, J. Avila, A. Resta, I. Razado-Colambo, C. Quaresima, C. Ottaviani, B. Olivieri, T. Bruhn, P. Vogt, M. C. Asensio, and G. Le Lay, The quasiparticle band dispersion in epitaxial multilayer silicene, J. Phys.: Condens. Matter 25(38), 382202 (2013)

    ADS  Google Scholar 

  183. P. De Padova, C. Ottaviani, C. Quaresima, B. Olivieri, P. Imperatori, E. Salomon, T. Angot, L. Quagliano, C. Romano, A. Vona, M. Muniz-Miranda, A. Generosi, B. Paci, and G. Le Lay, 24 h stability of thick multilayer silicene in air, 2D Mater. 1(2), 021003 (2014)

    Google Scholar 

  184. H. Li, X. Liao, G. Chen, D. J. Hill, Z. Dong, and T. Huang, Event-triggered asynchronous intermittent communication strategy for synchronization in complex dynamical networks, Neural Netw. 66, 1 (2015)

    MATH  Google Scholar 

  185. J. Zhao, H. Liu, Z. Yu, R. Quhe, S. Zhou, Y. Wang, C. C. Liu, H. Zhong, N. Han, J. Lu, Y. Yao, and K. Wu, Rise of silicene: A competitive 2D material, Prog. Mater. Sci. 83, 24 (2016)

    Google Scholar 

  186. K. S. Novoselov, V. I. Falko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, A roadmap for graphene., Nature 490(7419), 192 (2012)

    ADS  Google Scholar 

  187. R. Balog, B. Jørgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E. Lægsgaard, A. Baraldi, S. Lizzit, Z. Sljivancanin, F. Besenbacher, B. Hammer, T. G. Pedersen, P. Hofmann, and L. Hornekær, Bandgap opening in graphene induced by patterned hydrogen adsorption, Nat. Mater. 9(4), 315 (2010)

    ADS  Google Scholar 

  188. K. A. Mkhoyan, A. W. Contryman, J. Silcox, D. A. Stewart, G. Eda, C. Mattevi, S. Miller, and M. Chhowalla, Atomic and electronic structure of graphene-oxide, Nano Lett. 9(3), 1058 (2009)

    ADS  Google Scholar 

  189. B. Gao, X. Shao, J. Lv, Y. Wang, and Y. Ma, Structure prediction of atoms adsorbed on two-dimensional layer materials: Method and applications, J. Phys. Chem. C 119(34), 20111 (2015)

    Google Scholar 

  190. H. J. Xiang, S. H. Wei, and X. G. Gong, Structural motifs in oxidized graphene: A genetic algorithm study based on density functional theory, Phys. Rev. B 82(3), 035416 (2010)

    ADS  Google Scholar 

  191. L. Zhou, Z. F. Hou, B. Gao, and T. Frauenheim, Doped graphenes as anodes with large capacity for lithium-ion batteries, J. Mater. Chem. A 4(35), 13407 (2016)

    Google Scholar 

  192. T. Hu, M. Hu, B. Gao, W. Li, and X. Wang, Screening surface structure of MXenes by high-throughput computation and vibrational spectroscopic confirmation, J. Phys. Chem. C 122(32), 18501 (2018)

    Google Scholar 

  193. J. Isberg, High carrier mobility in single-crystal plasma-deposited diamond, Science 297(5587), 1670 (2002)

    ADS  Google Scholar 

  194. W. S. Verwoerd, A study of the dimer bond on the reconstructed (100) surfaces of diamond and silicon, Surf. Sci. 103(2–3), 404 (1981)

    ADS  Google Scholar 

  195. K. Bobrov, A. J. Mayne, and G. Dujardin, Atomic-scale imaging of insulating diamond through resonant electron injection, Nature 413(6856), 616 (2001)

    ADS  Google Scholar 

  196. S. Lu, D. Fan, C. Chen, Y. Mei, Y. Ma, and X. Hu, Ground-state structure of oxidized diamond (100) surface: An electronically nearly surface-free reconstruction, Carbon 159, 9 (2020)

    Google Scholar 

  197. T. Ando, K. Yamamoto, M. Ishii, M. Kamo, and Y. Sato, Vapour-phase oxidation of diamond surfaces in O2 studied by diffuse reflectance Fourier-transform infrared and temperature-programmed desorption spectroscopy, J. Chem. Soc. Faraday Trans. 89(19), 3635 (1993)

    Google Scholar 

  198. P. John, N. Polwart, C. E. Troupe, and J. I. B. Wilson, The oxidation of diamond: The geometry and stretching frequency of carbonyl on the (100) surface, J. Am. Chem. Soc. 125(22), 6600 (2003)

    Google Scholar 

  199. H. Tamura, H. Zhou, K. Sugisako, Y. Yokoi, S. Takami, M. Kubo, K. Teraishi, A. Miyamoto, A. Imamura, M. N. Gamo, and T. Ando, Periodic density-functional study on oxidation of diamond (100) surfaces., Phys. Rev. B 61(16), 11025 (2000)

    ADS  Google Scholar 

  200. S. J. Sque, R. Jones, and P. R. Briddon, Structure, electronics, and interaction of hydrogen and oxygen on diamond surfaces, Phys. Rev. B 73(8), 085313 (2006)

    ADS  Google Scholar 

  201. H. Yang, L. Xu, C. Gu, and S. B. Zhang, First-principles study of oxygenated diamond (001) surfaces with and without hydrogen, Appl. Surf. Sci. 253(9), 4260 (2007)

    ADS  Google Scholar 

  202. F. Zuo, L. Wang, T. Wu, Z. Zhang, D. Borchardt, and P. Feng, Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light, J. Am. Chem. Soc. 132(34), 11856 (2010)

    Google Scholar 

  203. A. Manthiram, X. Yu, and S. Wang, Lithium battery chemistries enabled by solid-state electrolytes, Nat. Rev. Mater. 2(4), 16103 (2017)

    ADS  Google Scholar 

  204. Z. Zhang, Y. Shao, B. Lotsch, Y. S. Hu, H. Li, J. Janek, L. F. Nazar, C. W. Nan, J. Maier, M. Armand, and L. Chen, New horizons for inorganic solid state ion conductors, Energy Environ. Sci. 11(8), 1945 (2018)

    Google Scholar 

  205. K. Takada, N. Ohta, L. Zhang, K. Fukuda, I. Sakaguchi, R. Ma, M. Osada, and T. Sasaki, Interfacial modification for high-power solid-state lithium batteries, Solid State Ion. 179(27–32), 1333 (2008)

    Google Scholar 

  206. B. Gao, R. Jalem, Y. Ma, and Y. Tateyama, Li + transport mechanism at the heterogeneous cathode/solid electrolyte interface in an all-solid-state battery via the first-principles structure prediction scheme, Chem. Mater. 32(1), 85 (2020)

    Google Scholar 

  207. C. Ma, Y. Cheng, K. Yin, J. Luo, A. Sharafi, J. Sakamoto, J. Li, K. L. More, N. J. Dudney, and M. Chi, Interfacial stability of Li metal-solid electrolyte elucidated via in situ electron microscopy, Nano Lett. 16(11), 7030 (2016)

    ADS  Google Scholar 

  208. Y. Zhu, J. G. Connell, S. Tepavcevic, P. Zapol, R. Garcia-Mendez, N. J. Taylor, J. Sakamoto, B. J. Ingram, L. A. Curtiss, J. W. Freeland, D. D. Fong, and N. M. Markovic, Dopant-dependent stability of garnet solid electrolyte interfaces with lithium metal, Adv. Energy Mater. 9(12), 1803440 (2019)

    Google Scholar 

  209. F. Han, A. S. Westover, J. Yue, X. Fan, F. Wang, M. Chi, D. N. Leonard, N. J. Dudney, H. Wang, and C. Wang, High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes, Nat. Energy 4(3), 187 (2019)

    ADS  Google Scholar 

  210. B. Gao, R. Jalem, and Y. Tateyama, Surface-dependent stability of the interface between garnet Li7La3Zr2O12 and the Li metal in the all-solid-state battery from first-principles calculations, ACS Appl. Mater. Interfaces 12(14), 16350 (2020)

    Google Scholar 

  211. Q. Tong, L. Xue, J. Lv, Y. Wang, and Y. Ma, Accelerating CALYPSO structure prediction by data-driven learning of a potential energy surface, Faraday Discuss. 211, 31 (2018)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12034009, 91961204, 11874175, 11874176, 11974134, and 12074138), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB33000000), the Fundamental Research Funds for the Central Universities (Jilin University, JLU), the Program for JLU Science and Technology Innovative Research Team (JLU-STIRT), and Jilin Province Outstanding Young Talents Project No. 20190103040JH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Lv.

Additional information

This article can also be found at http://journal.hep.com.cn/fop/EN/10.1007/s11467-021-1109-2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, P., Gao, B., Lu, S. et al. Structure search of two-dimensional systems using CALYPSO methodology. Front. Phys. 17, 23203 (2022). https://doi.org/10.1007/s11467-021-1109-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-021-1109-2

Keywords

Navigation