Skip to main content
Log in

Silver Nanocube- and Nanowire-Based SERS Substrates for Ultra-low Detection of PATP and Thiram Molecules

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The shape-anisotropic metal nanoparticles support large surface plasmon resonance (SPR) wavelength tuning and higher intrinsic electromagnetic hot spots for excellent surface-enhanced Raman spectroscopy (SERS) performance. Here, two shape-anisotropic nanostructures, silver nanocubes and nanowires with sharp features and high yield, are synthesized using the polyol reduction method. Finite-difference time-domain (FDTD) simulations are performed to understand the origin of the SPR peaks in the absorption spectra and for optimization of excitation wavelengths for large near-field enhancement. Silver nanocubes and nanowires exhibit broad plasmon resonances over the visible region of the electromagnetic spectrum with maxima around 498 nm and 410 nm, respectively. The SERS activity of nanocubes and nanowires are investigated for three molecules of different Raman activity. The SERS spectra show higher activity for nanocubes and ultra-low molecular detection (10−15 M) capability of the fabricated substrates for rhodamine B (RhB) dye, p-aminothiophenol (PATP), and pesticide thiram. Relatively higher enhancement of some Raman modes is observed when excited with laser wavelength 532 nm indicating photo-induced charge transfer from metal to molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ding G, Xie S, Zhu Y, Liu Y, Wang L, Xu F (2015) Graphene oxide wrapped Fe3O4@Au nanohybrid as SERS substrate for aromatic dye detection. Sensors Actuators B Chem 221:1084–1093

    CAS  Google Scholar 

  2. Zhang L, Jiang C, Zhang Z (2013) Graphene oxide embedded sandwich nanostructures for enhanced Raman readout and their applications in pesticide monitoring. Nanoscale 5:3773–3779

    CAS  Google Scholar 

  3. Andreou C, Hoonejani MR, Barmi MR, Moskovits M, Meinhart CD (2013) Rapid detection of drugs of abuse in saliva using surface enhanced Raman spectroscopy and microfluidics. ACS Nano 7:7157–7164

    CAS  Google Scholar 

  4. Das R, Soni RK (2017) Synthesis and surface-enhanced Raman scattering of indium nanotriangles and nanowires. RSC Adv 7:32255–32263

    CAS  Google Scholar 

  5. Dasary SSR, Singh AK, Senapati D, Yu H, Ray PC (2009) Gold nanoparticle based label-free SERS probe for ultrasensitive and selective detection of trinitrotoluene. J Am Chem Soc 131:13806–13812

    CAS  Google Scholar 

  6. Li M, Cushing SK, Wu N (2015) Plasmon-enhanced optical sensors: a review. Analyst 140:386–406

    CAS  Google Scholar 

  7. Tian F, Bonnier F, Casey A, Shanahan AE, Byrne HJ (2014) Surface enhanced Raman scattering with gold nanoparticles: effect of particle shape. Anal Methods 6:9116–9123

    CAS  Google Scholar 

  8. Si S, Liang W, Sun Y, Huang J, Ma W, Liang Z, Bao Q, Jiang L (2016) Facile fabrication of high-density sub-1-nm gaps from Au nanoparticle monolayers as reproducible SERS substrates. Adv Funct Mater 26:8137–8145

    CAS  Google Scholar 

  9. Schlücker S (2014) Surface-enhanced Raman spectroscopy: concepts and chemical applications. Angew Chem Int Ed 53:4756–4795

    Google Scholar 

  10. Reguera J, Langer J, Aberasturi DJ, Liz-Marzán LM (2017) Anisotropic metal nanoparticles for surface enhanced Raman scattering. Chem Soc Rev 46:3866–3885

    CAS  Google Scholar 

  11. Jana D, Mandal A, De G (2012) High Raman enhancing shape-tunable Ag nanoplates in alumina: a reliable and efficient SERS technique. ACS Appl Mater Interfaces 4:3330–3334

    CAS  Google Scholar 

  12. Seo SH, Kim BM, Joe A, Han HW, Chen X, Cheng Z, Jang ES (2014) NIR-light-induced surface-enhanced Raman scattering for detection and photothermal/photodynamic therapy of cancer cells using methylene blue-embedded gold nanorod@SiO2 nanocomposites. Biomaterials 35:3309–3318

    CAS  Google Scholar 

  13. Niu W, Chua YAA, Zhang W, Huang H, Lu X (2015) Highly symmetric gold nanostars: crystallographic control and surface-enhanced Raman scattering property. J Am Chem Soc 137:10460–10463

    CAS  Google Scholar 

  14. Lv ZY, Mei LP, Chen WY, Feng JJ, Chen JY, Wang AJ (2014) Shaped-controlled electrosynthesis of gold nanodendrites for highly selective and sensitive SERS detection of formaldehyde. Sensors Actuators B Chem 201:92–99

    CAS  Google Scholar 

  15. Rycenga M, Xia X, Moran CH, Zhou F, Qin D, Li ZY, Xia Y (2011) Generation of hot spots with silver nanocubes for single-molecule detection by surface-enhanced Raman scattering. Angew Chem Int Ed 50:5473–5477

    CAS  Google Scholar 

  16. Chen M, Zhang H, Ge Y, Yang S, Wang P, Fang Y (2018) Surface-nanostructured single silver nanowire: a new one-dimensional microscale surface-enhanced Raman scattering interface. Langmuir 34:15160–15165

    CAS  Google Scholar 

  17. Ben-Jaber S, Peveler WJ, Quesada-Cabrera R, Sol CW, Papakonstantinou I, Parkin IP (2017) Sensitive and specific detection of explosives in solution and vapour by surface-enhanced Raman spectroscopy on silver nanocubes. Nanoscale 9:16459–16466

    CAS  Google Scholar 

  18. Kodiyath R, Malak ST, Combs ZA, Koenig T, Mahmoud MA, El-Sayed MA, Tsukruk VV (2013) Assemblies of silver nanocubes for highly sensitive SERS chemical vapor detection. J Mater Chem A 1:2777–2788

    CAS  Google Scholar 

  19. Jiang T, Wang B, Zhang L, Zhou J (2015) Hydrothermal synthesis of silver nanocubes with tunable edge lengths and their size dependent SERS behaviors. J Alloys Compd 632:140–146

    CAS  Google Scholar 

  20. McLellan JM, Siekkinen A, Chen J, Xia Y (2006) Comparison of the surface-enhanced Raman scattering on sharp and truncated silver nanocubes. Chem Phys Lett 427:122–126

    CAS  Google Scholar 

  21. Wang L, Sun Y, Li Z (2015) Dependence of Raman intensity on the surface coverage of silver nanocubes in SERS active monolayers. Appl Surf Sci 325:242–250

    CAS  Google Scholar 

  22. Kwon J, Suh YD, Lee J, Lee P, Han S, Hong S, Yeo J, Lee H, Ko SH (2018) Recent progress in silver nanowire based flexible/wearable optoelectronics. J Mater Chem C 6:7445–7461

    CAS  Google Scholar 

  23. Becucci M, Bracciali M, Ghini G, Lofrumento C, Pietraperzia G, Ricci M, Tognaccini L, Trigari S, Gellini C, Feis A (2018) Silver nanowires as infrared-active materials for surface-enhanced Raman scattering. Nanoscale 10:9329–9337

    CAS  Google Scholar 

  24. Shi YE, Li L, Yang M, Jiang X, Zhao Q, Zhan J (2014) A disordered silver nanowires membrane for extraction and surface-enhanced Raman spectroscopy detection. Analyst 139:2525–2530

    CAS  Google Scholar 

  25. Wang C, Liu B, Dou X (2016) Silver nanotriangles-loaded filter paper for ultrasensitive SERS detection application benefited by interspacing of sharp edges. Sensors Actuators B Chem 231:357–364

    CAS  Google Scholar 

  26. Feng JJ, Liu L, Huang H, Wang AJ (2017) Poly(ionic liquid)-assisted one-pot synthesis of Au hyperbranched architectures for enhanced SERS performances. Sensors Actuators B Chem 238:91–97

    CAS  Google Scholar 

  27. Ankudze B, Philip A, Pakkanen TT, Matikainen A, Vahimaa P (2016) Highly active surface-enhanced Raman scattering (SERS) substrates based on gold nanoparticles infiltrated into SiO2 inverse opals. Appl Surf Sci 387:595–602

    CAS  Google Scholar 

  28. Yan X, Wang M, Sun X, Wang Y, Shi G, Ma W, Hou P (2019) Sandwich-like Ag@Cu@CW SERS substrate with tunable nanogaps and component based on the plasmonic nanonodule structures for sensitive detection crystal violet and 4-aminothiophenol. Appl Surf Sci 479:879–886

    CAS  Google Scholar 

  29. Li Y, Zhang K, Zhao J, Ji J, Ji C, Liu B (2016) A three-dimensional silver nanoparticles decorated plasmonic paper strip for SERS detection of low-abundance molecules. Talanta 147:493–500

    CAS  Google Scholar 

  30. Alsammarraie FK, Lin M (2017) Using standing gold nanorod arrays as surface-enhanced Raman spectroscopy (SERS) substrates for detection of carbaryl residues in fruit juice and milk. J Agric Food Chem 65:666–674

    CAS  Google Scholar 

  31. Zhang CH, Zhu J, Li JJ, Zhao JW (2017) Small and sharp triangular silver nanoplates synthesized utilizing tiny triangular nuclei and their excellent SERS activity for selective detection of thiram residue in soil. ACS Appl Mater Interfaces 9:17387–17398

    CAS  Google Scholar 

  32. Zhang Z, Yu Q, Li H, Mustapha A, Lin M (2015) Standing gold nanorod arrays as reproducible SERS substrates for measurement of pesticides in apple juice and vegetables. J Food Sci 80:N450–N458

    CAS  Google Scholar 

  33. Zhou N, Meng G, Zhu C, Chen B, Zhou Q, Ke Y, Huo D (2018) A silver-grafted sponge as an effective surface-enhanced Raman scattering substrate. Sensors Actuators B Chem 258:56–63

    CAS  Google Scholar 

  34. Alyami A, Quinn AJ, Iacopino D (2019) Flexible and transparent surface enhanced Raman scattering (SERS)-active Ag NPs/PDMS composites for in-situ detection of food contaminants. Talanta 201:58–64

    CAS  Google Scholar 

  35. Yang N, You T, Gao Y, Lu S, Yin P (2019) One-step preparation method of flexible metafilms on the water–oil interface: self-assembly surface plasmon structures for surface-enhanced Raman scattering detection. Langmuir 35:4626–4633

    CAS  Google Scholar 

  36. Park S, Lee J, Ko H (2017) Transparent and flexible surface-enhanced Raman scattering (SERS) sensors based on gold nanostar arrays embedded in silicon rubber film. ACS Appl Mater Interfaces 9:44088–44095

    CAS  Google Scholar 

  37. Palik ED (1985) Handbook of optical constants of solids, vol I. Academic Press, Orlando, pp 355–356

    Google Scholar 

  38. Im SH, Lee YT, Wiley B, Xia Y (2005) Large-scale synthesis of silver nanocubes: the role of HCl in promoting cube perfection and monodispersity. Angew Chem Int Ed 44:2154–2157

    CAS  Google Scholar 

  39. Xia X, Zeng J, Zhang Q, Moran CH, Xia Y (2012) Recent developments in shape-controlled synthesis of silver nanocrystals. J Phys Chem C 116:21647–21656

    CAS  Google Scholar 

  40. Chang S, Chen K, Hua Q, Ma Y, Huang W (2011) Evidence for the growth mechanisms of silver nanocubes and nanowires. J Phys Chem C 115:7979–7986

    CAS  Google Scholar 

  41. Lee EJ, Chang MH, Kim YS, Kim JY (2013) High-pressure polyol synthesis of ultrathin silver nanowires: electrical and optical properties. APL Mater 1:042118 (1-6)

    Google Scholar 

  42. Gao Y, Song L, Jiang P, Liu LF, Yan XQ, Zhou ZP, Liu DF, Wang JX, Yuan HJ, Zhang ZX, Zhao XW, Dou XY, Zhou WY, Wang G, Xie SS, Chen HY, Li JQ (2005) Silver nanowires with five-fold symmetric cross-section. J Cryst Growth 276:606–612

    CAS  Google Scholar 

  43. Zhang S, Bao K, Halas NJ, Xu H, Nordlander P (2011) Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed. Nano Lett 11:1657–1663

    CAS  Google Scholar 

  44. Hermoso W, Alves TV, Ornellas FR, Camargo PHC (2012) Comparative study on the far-field spectra and near-field amplitudes for silver and gold nanocubes irradiated at 514, 633 and 785 nm as a function of the edge length. Eur Phys J D 66:135–146

    Google Scholar 

  45. Zhou F, Li ZY, Liu Y, Xia Y (2008) Quantitative analysis of dipole and quadrupole excitation in the surface plasmon resonance of metal nanoparticles. J Phys Chem C 112:20233–20240

    CAS  Google Scholar 

  46. Hung L, Lee SY, McGovern O, Rabin O, Mayergoyz I (2013) Calculation and measurement of radiation corrections for plasmon resonances in nanoparticle. Phys Rev B 88:075424

    Google Scholar 

  47. Wei Z, Zhou ZK, Li Q, Xue J, Falco AD, Yang Z, Zhou J, Wang X (2017) Flexible nanowire cluster as a wearable colorimetric humidity sensor. Small 13:1700109–1700116

    Google Scholar 

  48. Lin S, Hasi WLJ, Lin X, Han S, Lou XT, Yang F, Lin DY, Lu ZW (2015) Rapid and sensitive SERS method for determination of rhodamine B in chili powder with paper-based substrates. Anal Methods 7:5289–5294

    CAS  Google Scholar 

  49. Yin PG, Jiang L, You TT, Zhou W, Li L, Guo L, Yang S (2010) Surface-enhanced Raman spectroscopy with self-assembled cobalt nanoparticle chains: comparison of theory and experiment. Phys Chem Chem Phys 12:10781–10785

    CAS  Google Scholar 

  50. Kudelski A (2005) Raman studies of rhodamine 6G and crystal violet sub-monolayers on electrochemically roughened silver substrates: do dye molecules adsorb preferentially on highly SERS-active sites? Chem Phys Lett 414:271–275

    CAS  Google Scholar 

  51. Zhan Z, Xu R, Mi Y, Zhao H, Lei Y (2015) Highly controllable surface plasmon resonance property by heights of ordered nanoparticle arrays fabricated via a nonlithographic route. ACS Nano 9:4583–4590

    CAS  Google Scholar 

  52. Ditlbacher H, Hohenau A, Wagner D, Kreibig U, Rogers M, Hofer F, Aussenegg FR, Krenn JR (2005) Silver nanowires as surface plasmon resonators. PRL 95:257403 (1-4)

    Google Scholar 

  53. Fang Z, Lu Y, Fan L, Lin C, Zhu X (2010) Surface plasmon polariton enhancement in silver nanowire–nanoantenna structure. Plasmonics 5:57–62

    CAS  Google Scholar 

  54. Wang Y, Zou X, Ren W, Wang W, Wang E (2007) Effect of silver nanoplates on Raman spectra of p-aminothiophenol assembled on smooth macroscopic gold and silver surface. J Phys Chem C 111:3259–3265

    CAS  Google Scholar 

  55. Lombardi JR, Birke RL (2009) A unified view of surface-enhanced Raman scattering. Acc Chem Res 42:734–742

    CAS  Google Scholar 

  56. Lombardi JR, Birke RL (2008) A unified approach to surface-enhanced Raman spectroscopy. J Phys Chem C 112:5605–5617

    CAS  Google Scholar 

  57. Sanchez-Cortes S, Vasina M, Francioso O, Garcia-Ramos JV (1998) Raman and surface-enhanced Raman spectroscopy of dithiocarbamate fungicides. Vib Spectrosc 17:133–144

    CAS  Google Scholar 

  58. Cui H, Li S, Deng S, Chen H, Wang C (2017) Flexible, transparent, and free-standing silicon nanowire SERS platform for in situ food inspection. ACS Sens 2:386–393

    CAS  Google Scholar 

Download references

Acknowledgments

The authors thankfully acknowledge FIST (DST Govt of India) UFO scheme of IIT Delhi for Raman measurements, Nanoscale Research Facility (NRF) for EDX measurement, and the Defence Research & Development Organisation for funding the project vide grant # DFTM/03/3203/P/02/JATC-P2QP-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Soni.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 120 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, G., Soni, R.K. Silver Nanocube- and Nanowire-Based SERS Substrates for Ultra-low Detection of PATP and Thiram Molecules. Plasmonics 15, 1577–1589 (2020). https://doi.org/10.1007/s11468-020-01172-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01172-0

Keywords

Navigation