Skip to main content
Log in

Normal subgroups in the Cremona group

  • Published:
Acta Mathematica

Abstract

Let k be an algebraically closed field. We show that the Cremona group of all birational transformations of the projective plane \( \mathbb{P}_{\mathbf{k}}^2 \) is not a simple group. The strategy makes use of hyperbolic geometry, geometric group theory and algebraic geometry to produce elements in the Cremona group that generate non-trivial normal subgroups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akhiezer, D. N., Lie Group Actions in Complex Analysis. Aspects of Mathematics, E27. Vieweg, Braunschweig, 1995.

  2. Blanc, J., Sous-groupes algébriques du groupe de Cremona. Transform. Groups, 14 (2009), 249–285.

    Article  MathSciNet  MATH  Google Scholar 

  3. — Groupes de Cremona, connexité et simplicité. Ann. Sci. Éc. Norm. Supér., 43 (2010), 357–364.

    MathSciNet  MATH  Google Scholar 

  4. Boucksom, S., Favre, C. & Jonsson, M., Degree growth of meromorphic surface maps. Duke Math. J., 141 (2008), 519–538.

    Article  MathSciNet  MATH  Google Scholar 

  5. Bridson, M. R. & Haefliger, A., Metric Spaces of Non-Positive Curvature. Grundlehren der Mathematischen Wissenschaften, 319. Springer, Berlin–Heildeberg, 1999.

  6. Cantat, S., Sur les groupes de transformations birationnelles des surfaces. Ann. of Math., 174 (2011), 299–340.

    Article  MathSciNet  MATH  Google Scholar 

  7. Cantat, S. & Dolgachev, I., Rational surfaces with a large group of automorphisms. J. Amer. Math. Soc., 25 (2012), 863–905.

    Article  MathSciNet  MATH  Google Scholar 

  8. Cantat, S. & Lamy, S., Normal subgroups in the Cremona group (long version). Preprint, 2010. arXiv:1007.0895 [math.AG].

  9. Cerveau, D. & Déserti, J., Transformations birationnelles de petit degré. Unpublished notes, 2009.

  10. Chaynikov, V., On the generators of the kernels of hyperbolic group presentations. Algebra Discrete Math., 11 (2011), 18–50.

    MathSciNet  MATH  Google Scholar 

  11. Chiswell, I., Introduction to Λ-Trees. World Scientific, River Edge, NJ, 2001.

    Google Scholar 

  12. Coble, A. B., Algebraic Geometry and Theta Functions. American Mathematical Society Colloquium Publications, 10. Amer. Math. Soc., Providence, RI, 1982.

  13. Coornaert, M., Delzant, T. & Papadopoulos, A., Géométrie et théorie des groupes. Lecture Notes in Mathematics, 1441. Springer, Berlin–Heidelberg, 1990.

  14. Cossec, F.R. & Dolgachev, I. V., Enriques Surfaces. I. Progress in Mathematics, 76. Birkhäuser, Boston, MA, 1989.

  15. Dahmani, F., Guirardel, V. & Osin, D., Hyperbolically embedded subgroups and rotating families in groups acting on hyperbolic spaces. Preprint, 2011. arXiv:1111.7048 [math.GR].

    Google Scholar 

  16. Danilov, V. I., Non-simplicity of the group of unimodular automorphisms of an affine plane. Mat. Zametki, 15 (1974), 289–293 (Russian); English translation in Math. Notes, 15 (1974), 165–167.

  17. Delzant, T., Sous-groupes distingués et quotients des groupes hyperboliques. Duke Math. J., 83 (1996), 661–682.

    Article  MathSciNet  MATH  Google Scholar 

  18. Déserti, J., Groupe de Cremona et dynamique complexe: une approche de la conjecture de Zimmer. Int. Math. Res. Not., 2006 (2006), Art. ID 71701, 27 pp.

  19. — Sur les automorphismes du groupe de Cremona. Compos. Math., 142 (2006), 1459–1478.

    Article  MathSciNet  MATH  Google Scholar 

  20. — Le groupe de Cremona est hopfien. C. R. Math. Acad. Sci. Paris, 344 (2007), 153–156.

    Article  MathSciNet  MATH  Google Scholar 

  21. Diller, J. & Favre, C., Dynamics of bimeromorphic maps of surfaces. Amer. J. Math., 123 (2001), 1135–1169.

    Article  MathSciNet  MATH  Google Scholar 

  22. Dolgachev, I. V., On automorphisms of Enriques surfaces. Invent. Math., 76 (1984), 163–177.

    Article  MathSciNet  MATH  Google Scholar 

  23. — Infinite Coxeter groups and automorphisms of algebraic surfaces, in The Lefschetz Centennial Conference, Part I (Mexico City, 1984), Contemp. Math., 58, pp. 91–106. Amer. Math. Soc., Providence, RI, 1986.

  24. — Reflection groups in algebraic geometry. Bull. Amer. Math. Soc., 45 (2008), 1–60.

    Article  MathSciNet  MATH  Google Scholar 

  25. Dolgachev, I.V. & Ortland, D., Point sets in projective spaces and theta functions. Astérisque, 165 (1988).

  26. Dolgachev, I. V. & Zhang, D.-Q., Coble rational surfaces. Amer. J. Math., 123 (2001), 79–114.

    Article  MathSciNet  MATH  Google Scholar 

  27. Enriques, F., Conferenze di Geometria. Pongetti, Bologna, 1895. http://enriques.mat.uniroma2.it/opere/95006lfl.html.

  28. Ershov, M. & Jaikin-Zapirain, A., Property (T) for noncommutative universal lattices. Invent. Math., 179 (2010), 303–347.

    Article  MathSciNet  MATH  Google Scholar 

  29. Favre, C., Le groupe de Cremona et ses sous-groupes de type fini, in Séminaire Bourbaki, Vol. 2008/2009, Exp. No. 998, pp. 11–43. Astérisque, 332. Soc. Math. France, Paris, 2010.

  30. Fröhlich, A. & Taylor, M. J., Algebraic Number Theory. Cambridge Studies in Advanced Mathematics, 27. Cambridge University Press, Cambridge, 1993.

  31. Furter, J.-P. & Lamy, S., Normal subgroup generated by a plane polynomial automorphism. Transform. Groups, 15 (2010), 577–610.

    Article  MathSciNet  MATH  Google Scholar 

  32. Ghys, É. & de la Harpe, P., Sur les groupes hyperboliques d’après Mikhael Gromov (Bern, 1988). Progr. Math., 83. Birkhäuser, Boston, MA, 1990.

  33. Gizatullin, M. H., Rational G-surfaces. Izv. Akad. Nauk SSSR Ser. Mat., 44 (1980), 110–144, 239 (Russian); English translation in Math. USSR–Izv, 16 (1981), 103–134.

  34. — The decomposition, inertia and ramification groups in birational geometry, in Algebraic Geometry and its Applications (Yaroslavl′, 1992), Aspects Math., E25, pp. 39–45. Vieweg, Braunschweig, 1994.

  35. Guedj, V., Propriétés ergodiques des applications rationnelles, in Quelques aspects des systèmes dynamiques polynomiaux, Panor. Synthèses, 30, pp. 97–202. Soc. Math. France, Paris, 2010.

  36. Halphèn, G., Sur les courbes planes du sixième degrè à neuf points doubles. Bull. Soc. Math. France, 10 (1882), 162–172.

    MathSciNet  MATH  Google Scholar 

  37. Hartshorne, R., Algebraic Geometry. Graduate Texts in Mathematics, 52. Springer, New York, 1977.

  38. Higman, G., Neumann, B. H. & Neumann, H., Embedding theorems for groups. J. London Math. Soc., 24 (1949), 247–254.

    Article  MathSciNet  Google Scholar 

  39. Hubbard, J. H., Teichmüller Theory and Applications to Geometry, Topology, and Dynamics. Vol. 1. Matrix Editions, Ithaca, NY, 2006.

    Google Scholar 

  40. Jung, H.W. E., Über ganze birationale Transformationen der Ebene. J. Reine Angew. Math., 184 (1942), 161–174.

    MathSciNet  Google Scholar 

  41. Kollár, J., Smith, K.E. & Corti, A., Rational and Nearly Rational Varieties. Cambridge Studies in Advanced Mathematics, 92. Cambridge Univ. Press, Cambridge, 2004.

    Google Scholar 

  42. Lamy, S., Une preuve géométrique du théorème de Jung. Enseign. Math., 48 (2002), 291–315.

    MathSciNet  MATH  Google Scholar 

  43. Groupes de transformations birationnelles de surfaces. Mémoire d’habilitation, Université Lyon 1, Lyon, 2010.

  44. Lazarsfeld, R., Positivity in Algebraic Geometry. I. Classical setting: line bundles and linear series. Ergebnisse der Mathematik und ihrer Grenzgebiete, 48. Springer, Berlin-Heidelberg, 2004.

    Google Scholar 

  45. Lyndon, R. C. & Schupp, P. E., Combinatorial Group Theory. Classics in Mathematics. Springer, Berlin–Heidelberg, 2001.

    Google Scholar 

  46. Manin, Y. I., Cubic Forms. North-Holland Mathematical Library, 4. North-Holland, Amsterdam, 1986.

  47. Mumford, D., Hilbert’s fourteenth problem—the finite generation of subrings such as rings of invariants, in Mathematical Developments Arising from Hilbert Problems (De Kalb, IL, 1974), Proc. Sympos. Pure Math., 28, pp. 431–444. Amer. Math. Soc., Providence, RI, 1976.

  48. Nguyen, D. D., Composantes irréductibles des transformations de Cremona de degré d. Thèse de Mathématique, Univ. Nice, Nice, 2009.

  49. Ol’shanskii, A. Y., SQ-universality of hyperbolic groups. Mat. Sb., 186 (1995), 119–132 (Russian); English translation in Sb. Math., 186 (1995), 1199–1211.

  50. Osin, D., Small cancellations over relatively hyperbolic groups and embedding theorems. Ann. of Math., 172 (2010), 1–39.

    Article  MathSciNet  MATH  Google Scholar 

  51. Serre, J.-P., Arbres, amalgames, SL2. Astérisque, 46 (1977).

  52. — Le groupe de Cremona et ses sous-groupes finis, in Séminaire Bourbaki, Vol. 2008/2009. Exp. No. 1000, pp. 75–100. Astérisque, 332. Soc. Math. France, Paris, 2010.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge Cantat.

Additional information

With an appendix by Yves de Cornulier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cantat, S., Lamy, S. & de Cornulier, Y. Normal subgroups in the Cremona group. Acta Math 210, 31–94 (2013). https://doi.org/10.1007/s11511-013-0090-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11511-013-0090-1

Navigation