Skip to main content
Log in

Cytoskeletal changes in diseases of the nervous system

  • Review
  • Published:
Frontiers in Biology

Abstract

The neuronal cytoskeleton not only provides the structural backbone of neurons, but also plays a fundamental role in maintaining neuronal functions. Dysregulation of neuronal architecture is evident in both injury and diseases of the central nervous system. These changes often result in the disruption of protein trafficking, loss of synapses and the death of neurons, ultimately impacting on signal transmission and manifesting in the disease phenotype. Furthermore, mutations in cytoskeletal proteins have been implicated in numerous diseases and, in some cases, identified as the cause of the disease, highlighting the critical role of the cytoskeleton in disease pathology. This review focuses on the role of cytoskeletal proteins in the pathology of mental disorders, neurodegenerative diseases and motor function deficits. In particular, we illustrate how cytoskeletal proteins can be directly linked to disease pathology and progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Chalabi A, Andersen P M, Nilsson P, Chioza B, Andersson J L, Russ C, Shaw C E, Powell J F, Leigh P N (1999). Deletions of the heavy neurofilament subunit tail in amyotrophic lateral sclerosis. Hum Mol Genet, 8(2): 157–164

    CAS  PubMed  Google Scholar 

  • Anderson S A, Volk D W, Lewis D A (1996). Increased density of microtubule associated protein 2-immunoreactive neurons in the prefrontal white matter of schizophrenic subjects. Schizophr Res, 19(2–3): 111–119

    CAS  PubMed  Google Scholar 

  • Andrianantoandro E, Pollard T D (2006). Mechanism of actin filament turnover by severing and nucleation at different concentrations of ADF/cofilin. Mol Cell, 24(1): 13–23

    CAS  PubMed  Google Scholar 

  • Andrieux A, Salin P A, Vernet M, Kujala P, Baratier J, Gory-Fauré S, Bosc C, Pointu H, Proietto D, Schweitzer A, Denarier E, Klumperman J, Job D (2002). The suppression of brain cold-stable microtubules in mice induces synaptic defects associated with neuroleptic-sensitive behavioral disorders. Genes Dev, 16(18): 2350–2364

    CAS  PubMed  Google Scholar 

  • Arber S, Barbayannis F A, Hanser H, Schneider C, Stanyon C A, Bernard O, Caroni P (1998). Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature, 393(6687): 805–809

    CAS  PubMed  Google Scholar 

  • Armstrong R A, Cairns N J (2012). Different molecular pathologies result in similar spatial patterns of cellular inclusions in neurode-generative disease: a comparative study of eight disorders. J Neural Transm, 119(12): 1551–1560

    CAS  PubMed  Google Scholar 

  • Armstrong R A, Kerty E, Skullerud K, Cairns N J (2006). Neuropathological changes in ten cases of neuronal intermediate filament inclusion disease (NIFID): a study using alpha-internexin immunohistochemistry and principal components analysis (PCA). J Neural Transm, 113(9): 1207–1215

    CAS  PubMed  Google Scholar 

  • Asbury A K, Gale M K, Cox S C, Baringer J R, Berg B O (1972). Giant axonal neuropathy—a unique case with segmental neurofilamentous masses. Acta Neuropathol, 20(3): 237–247

    CAS  PubMed  Google Scholar 

  • Asrar S, Meng Y, Zhou Z, Todorovski Z, Huang W W, Jia Z (2009). Regulation of hippocampal long-term potentiation by p21-activated protein kinase 1 (PAK1). Neuropharmacology, 56(1): 73–80

    CAS  PubMed  Google Scholar 

  • Baas P W, Ahmad F J (2013). Beyond taxol: microtubule-based treatment of disease and injury of the nervous system. Brain, 136(Pt 10): 2937–2951

    PubMed  Google Scholar 

  • Ballatore C, Lee V M, Trojanowski J Q (2007). Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat Rev Neurosci, 8(9): 663–672

    CAS  PubMed  Google Scholar 

  • Bégou M, Brun P, Bertrand J B, Job D, Schweitzer A, D’Amato T, Saoud M, Andrieux A, Suaud-Chagny M F (2007). Post-pubertal emergence of alterations in locomotor activity in stop null mice. Synapse, 61(9): 689–697

    PubMed  Google Scholar 

  • Bégou M, Volle J, Bertrand J B, Brun P, Job D, Schweitzer A, Saoud M, D’Amato T, Andrieux A, Suaud-Chagny M F (2008). The stop null mice model for schizophrenia displays [corrected] cognitive and social deficits partly alleviated by neuroleptics. Neuroscience, 157(1): 29–39

    PubMed  Google Scholar 

  • Belichenko P V, Dahlström A (1995). Studies on the 3-dimensional architecture of dendritic spines and varicosities in human cortex by confocal laser scanning microscopy and Lucifer yellow microinjections. J Neurosci Methods, 57(1): 55–61

    CAS  PubMed  Google Scholar 

  • Bento-Abreu A, Van Damme P, Van Den Bosch L, Robberecht W (2010). The neurobiology of amyotrophic lateral sclerosis. Eur J Neurosci, 31(12): 2247–2265

    PubMed  Google Scholar 

  • Bergeron C, Beric-Maskarel K, Muntasser S, Weyer L, Somerville M J, Percy M E (1994). Neurofilament light and polyadenylated mRNA levels are decreased in amyotrophic lateral sclerosis motor neurons. J Neuropathol Exp Neurol, 53(3): 221–230

    CAS  PubMed  Google Scholar 

  • Bernhardt R, Matus A (1984). Light and electron microscopic studies of the distribution of microtubule-associated protein 2 in rat brain: a difference between dendritic and axonal cytoskeletons. J Comp Neurol, 226(2): 203–221

    CAS  PubMed  Google Scholar 

  • Bishop A L, Hall A (2000). Rho GTPases and their effector proteins. Biochem J, 348(Pt 2): 241–255

    CAS  PubMed  Google Scholar 

  • Bloom G S, Vallee R B (1983). Association of microtubule-associated protein 2 (MAP 2) with microtubules and intermediate filaments in cultured brain cells. J Cell Biol, 96(6): 1523–1531

    CAS  PubMed  Google Scholar 

  • Bocquet A, Berges R, Frank R, Robert P, Peterson A C, Eyer J (2009). Neurofilaments bind tubulin and modulate its polymerization. J Neurosci, 29(35): 11043–11054

    CAS  PubMed  Google Scholar 

  • Bosch M, Hayashi Y (2012). Structural plasticity of dendritic spines. Curr Opin Neurobiol, 22(3): 383–388

    CAS  PubMed  Google Scholar 

  • Brettschneider J, Petzold A, Süssmuth S D, Ludolph A C, Tumani H (2006). Axonal damage markers in cerebrospinal fluid are increased in ALS. Neurology, 66(6): 852–856

    CAS  PubMed  Google Scholar 

  • Brun P, Bégou M, Andrieux A, Mouly-Badina L, Clerget M, Schweitzer A, Scarna H, Renaud B, Job D, Suaud-Chagny M F (2005). Dopaminergic transmission in STOP null mice. J Neurochem, 94(1): 63–73

    CAS  PubMed  Google Scholar 

  • Brunden K R, Zhang B, Carroll J, Yao Y, Potuzak J S, Hogan A M, Iba M, James M J, Xie S X, Ballatore C, Smith A B 3rd, Lee V M Y, Trojanowski J Q (2010). Epothilone D improves microtubule density, axonal integrity, and cognition in a transgenic mouse model of tauopathy. J Neurosci, 30(41): 13861–13866

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bugyi B, Papp G, Hild G, Lõrinczy D, Nevalainen E M, Lappalainen P, Somogyi B, Nyitrai M (2006). Formins regulate actin filament flexibility through long range allosteric interactions. J Biol Chem, 281(16): 10727–10736

    CAS  PubMed Central  PubMed  Google Scholar 

  • Caceres A, Banker G, Steward O, Binder L, Payne M (1984). MAP2 is localized to the dendrites of hippocampal neurons which develop in culture. Brain Res, 315(2): 314–318

    CAS  PubMed  Google Scholar 

  • Cairns N J, Lee V M Y, Trojanowski J Q (2004). The cytoskeleton in neurodegenerative diseases. J Pathol, 204(4): 438–449

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chai X, Förster E, Zhao S, Bock H H, Frotscher M (2009). Reelin stabilizes the actin cytoskeleton of neuronal processes by inducing ncofilin phosphorylation at serine3. J Neurosci, 29(1): 288–299

    CAS  PubMed  Google Scholar 

  • Chen Y, Zheng ZZ, Huang R, Chen K, Song W, Zhao B, Chen X, Yang Y, Yuan L, Shang HF (2013) PFN1 mutations are rare in Han Chinese populations with amyotrophic lateral sclerosis. Neurobiol Aging 34:1922 e1921–1925.

    Google Scholar 

  • Clinton SM, Abelson S, Haroutunian V, Davis K, Meador-Woodruff J H (2004). Neurofilament subunit protein abnormalities in the thalamus in scizophrenia. Thalamus Relat Syst, 2: 265–272

    CAS  Google Scholar 

  • Clinton S M, Haroutunian V, Davis K L, Meador-Woodruff J H (2003). Altered transcript expression of NMDA receptor-associated postsynaptic proteins in the thalamus of subjects with schizophrenia. Am J Psychiatry, 160(6): 1100–1109

    PubMed  Google Scholar 

  • Cohen R S, Chung S K, Pfaff D W (1985). Immunocytochemical localization of actin in dendritic spines of the cerebral cortex using colloidal gold as a probe. Cell Mol Neurobiol, 5(3): 271–284

    CAS  PubMed  Google Scholar 

  • Collard J F, Côté F, Julien J P (1995). Defective axonal transport in a transgenic mouse model of amyotrophic lateral sclerosis. Nature, 375(6526): 61–64

    CAS  PubMed  Google Scholar 

  • Côté F, Collard J F, Julien J P (1993). Progressive neuronopathy in transgenic mice expressing the human neurofilament heavy gene: a mouse model of amyotrophic lateral sclerosis. Cell, 73(1): 35–46

    PubMed  Google Scholar 

  • Cotter D, Wilson S, Roberts E, Kerwin R, Everall I P (2000). Increased dendritic MAP2 expression in the hippocampus in schizophrenia. Schizophr Res, 41(2): 313–323

    CAS  PubMed  Google Scholar 

  • Daoud H, Dobrzeniecka S, Camu W, Meininger V, Dupre N, Dion PA, Rouleau GA (2013) Mutation analysis of PFN1 in familial amyotrophic lateral sclerosis patients. Neurobiol Aging 34:1311 e1311–1312.

    Google Scholar 

  • Dehmelt L, Halpain S (2004). Actin and microtubules in neurite initiation: are MAPs the missing link? J Neurobiol, 58(1): 18–33

    CAS  PubMed  Google Scholar 

  • Dent EW, Kalil K (2001). Axon branching requires interactions between dynamic microtubules and actin filaments. J Neurosci, 21(24): 9757–9769

    CAS  PubMed  Google Scholar 

  • Deo A J, Goldszer I M, Li S, DiBitetto J V, Henteleff R, Sampson A, Lewis D A, Penzes P, Sweet R A (2013). PAK1 protein expression in the auditory cortex of schizophrenia subjects. PLoS ONE, 8(4): e59458

    CAS  PubMed Central  PubMed  Google Scholar 

  • Díez-Guerra F J, Avila J (1993). MAP2 phosphorylation parallels dendrite arborization in hippocampal neurones in culture. Neuroreport, 4(4): 419–422

    PubMed  Google Scholar 

  • DiProspero N A, Chen E Y, Charles V, Plomann M, Kordower J H, Tagle D A (2004). Early changes in Huntington’s disease patient brains involve alterations in cytoskeletal and synaptic elements. J Neurocytol, 33(5): 517–533

    PubMed  Google Scholar 

  • Dixit R, Ross J L, Goldman Y E, Holzbaur E L (2008). Differential regulation of dynein and kinesin motor proteins by tau. Science, 319(5866): 1086–1089

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dom R, Malfroid M, Baro F (1976). Neuropathology of Huntington’s chorea. Studies of the ventrobasal complex of the thalamus. Neurology, 26(1): 64–68

    CAS  Google Scholar 

  • Downing K H, Nogales E (1998). Tubulin and microtubule structure. Curr Opin Cell Biol, 10(1): 16–22

    CAS  PubMed  Google Scholar 

  • Duan W, Guo Y, Jiang H, Yu X, Li C (2011). MG132 enhances neurite outgrowth in neurons overexpressing mutant TAR DNA-binding protein-43 via increase of HO-1. Brain Res, 1397: 1–9

    CAS  PubMed  Google Scholar 

  • Ebneth A, Godemann R, Stamer K, Illenberger S, Trinczek B, Mandelkow E (1998). Overexpression of tau protein inhibits kinesin-dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum: implications for Alzheimer’s disease. J Cell Biol, 143(3): 777–794

    CAS  PubMed  Google Scholar 

  • Edwards D C, Sanders L C, Bokoch GM, Gill G N (1999). Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nat Cell Biol, 1(5): 253–259

    CAS  PubMed  Google Scholar 

  • Ehlers M D, Fung E T, O’Brien R J, Huganir R L (1998). Splice variantspecific interaction of the NMDA receptor subunit NR1 with neuronal intermediate filaments. J Neurosci, 18(2): 720–730

    CAS  PubMed  Google Scholar 

  • Ehlers M D, Tingley W G, Huganir R L (1995). Regulated subcellular distribution of the NR1 subunit of the NMDA receptor. Science, 269(5231): 1734–1737

    CAS  PubMed  Google Scholar 

  • Ferri C P, Prince M, Brayne C, Brodaty H, Fratiglioni L, Ganguli M, Hall K, Hasegawa K, Hendrie H, Huang Y, Jorm A, Mathers C, Menezes P R, Rimmer E, Scazufca M, and the Alzheimer’s Disease International (2005). Global prevalence of dementia: a Delphi consensus study. Lancet, 366(9503): 2112–2117

    PubMed Central  PubMed  Google Scholar 

  • Figlewicz D A, Krizus A, Martinoli M G, Meininger V, Dib M, Rouleau G A, Julien J P (1994). Variants of the heavy neurofilament subunit are associated with the development of amyotrophic lateral sclerosis. Hum Mol Genet, 3(10): 1757–1761

    CAS  PubMed  Google Scholar 

  • Freiman T M, Eismann-Schweimler J, Frotscher M (2011). Granule cell dispersion in temporal lobe epilepsy is associated with changes in dendritic orientation and spine distribution. Exp Neurol, 229(2): 332–338

    PubMed  Google Scholar 

  • Fuchs E, Cleveland DW (1998). A structural scaffolding of intermediate filaments in health and disease. Science, 279(5350): 514–519

    CAS  PubMed  Google Scholar 

  • Fulga T A, Elson-Schwab I, Khurana V, Steinhilb M L, Spires T L, Hyman B T, Feany M B (2007). Abnormal bundling and accumulation of F-actin mediates tau-induced neuronal degeneration in vivo. Nat Cell Biol, 9(2): 139–148

    CAS  PubMed  Google Scholar 

  • Galloway P G, Mulvihill P, Perry G (1992). Filaments of Lewy bodies contain insoluble cytoskeletal elements. Am J Pathol, 140(4): 809–822

    CAS  PubMed  Google Scholar 

  • Galloway P G, Perry G, Gambetti P (1987). Hirano body filaments contain actin and actin-associated proteins. J Neuropathol Exp Neurol, 46(2): 185–199

    CAS  PubMed  Google Scholar 

  • Garey L J, Ong W Y, Patel T S, Kanani M, Davis A, Mortimer A M, Barnes T R, Hirsch S R (1998). Reduced dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia. J Neurol Neurosurg Psychiatry, 65(4): 446–453

    CAS  PubMed  Google Scholar 

  • Ge W W, Wen W, Strong W, Leystra-Lantz C, Strong M J (2005). Mutant copper-zinc superoxide dismutase binds to and destabilizes human low molecular weight neurofilament mRNA. J Biol Chem, 280(1): 118–124

    CAS  PubMed  Google Scholar 

  • Gibson P H, Tomlinson B E (1977). Numbers of Hirano bodies in the hippocampus of normal and demented people with Alzheimer’s disease. J Neurol Sci, 33(1–2): 199–206

    CAS  PubMed  Google Scholar 

  • Glantz L A, Lewis D A (2000). Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry, 57(1): 65–73

    CAS  PubMed  Google Scholar 

  • Glantz L A, Lewis D A (2001). Dendritic spine density in schizophrenia and depression. Arch Gen Psychiatry, 58(2): 203

    CAS  PubMed  Google Scholar 

  • Goedert M, Wischik C M, Crowther R A, Walker J E, Klug A (1988). Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: identification as the microtubule-associated protein tau. Proc Natl Acad Sci USA, 85(11): 4051–4055

    CAS  PubMed  Google Scholar 

  • Grundke-Iqbal I, Iqbal K, Quinlan M, Tung Y C, Zaidi M S, Wisniewski H M (1986a). Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J Biol Chem, 261(13): 6084–6089

    CAS  PubMed  Google Scholar 

  • Grundke-Iqbal I, Iqbal K, Tung Y C, Quinlan M, Wisniewski H M, Binder L I (1986b). Abnormal phosphorylation of the microtubuleassociated protein tau (τ) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA, 83(13): 4913–4917

    CAS  PubMed  Google Scholar 

  • Gunning P, O’Neill G, Hardeman E (2008). Tropomyosin-based regulation of the actin cytoskeleton in time and space. Physiol Rev, 88(1): 1–35

    CAS  PubMed  Google Scholar 

  • Haas C A, Dudeck O, Kirsch M, Huszka C, Kann G, Pollak S, Zentner J, Frotscher M (2002). Role for reelin in the development of granule cell dispersion in temporal lobe epilepsy. J Neurosci, 22(14): 5797–5802

    CAS  PubMed  Google Scholar 

  • Hanger D P, Anderton B H, Noble W (2009). Tau phosphorylation: the therapeutic challenge for neurodegenerative disease. Trends Mol Med, 15(3): 112–119

    CAS  PubMed  Google Scholar 

  • Hayashi M L, Choi S Y, Rao B S, Jung H Y, Lee H K, Zhang D, Chattarji S, Kirkwood A, Tonegawa S (2004). Altered cortical synaptic morphology and impaired memory consolidation in forebrain-specific dominant-negative PAK transgenic mice. Neuron, 42(5): 773–787

    CAS  PubMed  Google Scholar 

  • Hill J J, Hashimoto T, Lewis D A (2006). Molecular mechanisms contributing to dendritic spine alterations in the prefrontal cortex of subjects with schizophrenia. Mol Psychiatry, 11(6): 557–566

    CAS  PubMed  Google Scholar 

  • Hill W D, Lee V M, Hurtig H I, Murray J M, Trojanowski J Q (1991). Epitopes located in spatially separate domains of each neurofilament subunit are present in Parkinson’s disease Lewy bodies. J Comp Neurol, 309(1): 150–160

    CAS  PubMed  Google Scholar 

  • Houser C R (1990). Granule cell dispersion in the dentate gyrus of humans with temporal lobe epilepsy. Brain Res, 535(2): 195–204

    CAS  PubMed  Google Scholar 

  • Hutton M, Lendon C L, Rizzu P, Baker M, Froelich S, Houlden H, Pickering-Brown S, Chakraverty S, Isaacs A, Grover A, Hackett J, Adamson J, Lincoln S, Dickson D, Davies P, Petersen R C, Stevens M, de Graaff E, Wauters E, van Baren J, Hillebrand M, Joosse M, Kwon J M, Nowotny P, Che L K, Norton J, Morris J C, Reed L A, Trojanowski J, Basun H, Lannfelt L, Neystat M, Fahn S, Dark F, Tannenberg T, Dodd P R, Hayward N, Kwok J B, Schofield P R, Andreadis A, Snowden J, Craufurd D, Neary D, Owen F, Oostra B A, Hardy J, Goate A, van Swieten J, Mann D, Lynch T, Heutink P (1998). Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature, 393(6686): 702–705

    CAS  PubMed  Google Scholar 

  • Ingre C, Landers JE, Rizik N, Volk AE, Akimoto C, Birve A, Hubers A, Keagle PJ, Piotrowska K, Press R, Andersen PM, Ludolph AC, Weishaupt J H (2013). A novel phosphorylation site mutation in profilin 1 revealed in a large screen of US, Nordic, and German amyotrophic lateral sclerosis/frontotemporal dementia cohorts. Neurobiol Aging, 34:1708 e1701–1706

    Google Scholar 

  • Iqbal K, Grundke-Iqbal I, Zaidi T, Merz P A, Wen G Y, Shaikh S S, Wisniewski H M, Alafuzoff I, Winblad B (1986). Defective brain microtubule assembly in Alzheimer’s disease. Lancet, 2(8504): 421–426

    CAS  PubMed  Google Scholar 

  • Ittner LM, Ke Y D, Delerue F, Bi M, Gladbach A, van Eersel J, Wölfing H, Chieng B C, Christie M J, Napier I A, Eckert A, Staufenbiel M, Hardeman E, Götz J (2010). Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models. Cell, 142(3): 387–397

    CAS  PubMed  Google Scholar 

  • Jordanova A, De Jonghe P, Boerkoel C F, Takashima H, De Vriendt E, Ceuterick C, Martin J J, Butler I J, Mancias P, Papasozomenos S Ch, Terespolsky D, Potocki L, Brown C W, Shy M, Rita D A, Tournev I, Kremensky I, Lupski J R, Timmerman V (2003). Mutations in the neurofilament light chain gene (NEFL) cause early onset severe Charcot-Marie-Tooth disease. Brain, 126(Pt 3): 590–597

    CAS  PubMed  Google Scholar 

  • Ke Y D, Suchowerska A K, van der Hoven J, De Silva D M, Wu C W, van Eersel J, Ittner A, Ittner L M (2012). Lessons from tau-deficient mice. Int J Alzheimers Dis, 2012: 873270

    PubMed Central  PubMed  Google Scholar 

  • Kim C H, Lisman J E (1999). A role of actin filament in synaptic transmission and long-term potentiation. J Neurosci, 19(11): 4314–4324

    CAS  PubMed  Google Scholar 

  • Korobova F, Svitkina T (2008). Arp2/3 complex is important for filopodia formation, growth cone motility, and neuritogenesis in neuronal cells. Mol Biol Cell, 19(4): 1561–1574

    CAS  PubMed Central  PubMed  Google Scholar 

  • Krüger R, Fischer C, Schulte T, Strauss KM, Müller T, Woitalla D, Berg D, Hungs M, Gobbele R, Berger K, Epplen J T, Riess O, Schöls L (2003). Mutation analysis of the neurofilamentMgene in Parkinson’s disease. Neurosci Lett, 351(2): 125–129

    PubMed  Google Scholar 

  • Kuhn T B, Bamburg J R (2008). Tropomyosin and ADF/cofilin as collaborators and competitors. Adv Exp Med Biol, 644: 232–249

    CAS  PubMed  Google Scholar 

  • Lattante S, Le Ber I, Camuzat A, Brice A, Kabashi E (2013). Mutations in the PFN1 gene are not a common cause in patients with amyotrophic lateral sclerosis and frontotemporal lobar degeneration in France. Neurobiol Aging, 34:1709 e1701–1702

    Google Scholar 

  • Lavedan C, Buchholtz S, Nussbaum R L, Albin R L, Polymeropoulos M H (2002). A mutation in the human neurofilament M gene in Parkinson’s disease that suggests a role for the cytoskeleton in neuronal degeneration. Neurosci Lett, 322(1): 57–61

    CAS  PubMed  Google Scholar 

  • Lee M K, Marszalek J R, Cleveland D W (1994). A mutant neurofilament subunit causes massive, selective motor neuron death: implications for the pathogenesis of human motor neuron disease. Neuron, 13(4): 975–988

    CAS  PubMed  Google Scholar 

  • Lee V M, Goedert M, Trojanowski J Q (2001). Neurodegenerative tauopathies. Annu Rev Neurosci, 24(1): 1121–1159

    CAS  PubMed  Google Scholar 

  • Li B, Chohan M O, Grundke-Iqbal I, Iqbal K (2007). Disruption of microtubule network by Alzheimer abnormally hyperphosphorylated tau. Acta Neuropathol, 113(5): 501–511

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lücking C B, Dürr A, Bonifati V, Vaughan J, De Michele G, Gasser T, Harhangi B S, Meco G, Denèfle P, Wood NW, Agid Y, Brice A, and the French Parkinson’s Disease Genetics Study Group, and the European Consortium on Genetic Susceptibility in Parkinson’s Disease (2000). Association between early-onset Parkinson’s disease and mutations in the parkin gene. N Engl J Med, 342(21): 1560–1567

    PubMed  Google Scholar 

  • Luo L, Hensch T K, Ackerman L, Barbel S, Jan L Y, Jan Y N (1996). Differential effects of the Rac GTPase on Purkinje cell axons and dendritic trunks and spines. Nature, 379(6568): 837–840

    CAS  PubMed  Google Scholar 

  • Maciver S K, Harrington C R (1995). Two actin binding proteins, actin depolymerizing factor and cofilin, are associated with Hirano bodies. Neuroreport, 6(15): 1985–1988

    CAS  PubMed  Google Scholar 

  • Mahammad S, Murthy S N, Didonna A, Grin B, Israeli E, Perrot R, Bomont P, Julien J P, Kuczmarski E, Opal P, Goldman R D (2013). Giant axonal neuropathy-associated gigaxonin mutations impair intermediate filament protein degradation. J Clin Invest, 123(5): 1964–1975

    CAS  PubMed Central  PubMed  Google Scholar 

  • Manetto V, Sternberger N H, Perry G, Sternberger L A, Gambetti P (1988). Phosphorylation of neurofilaments is altered in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol, 47(6): 642–653

    CAS  PubMed  Google Scholar 

  • Manser E, Leung T, Salihuddin H, Zhao Z S, Lim L (1994). A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature, 367(6458): 40–46

    CAS  PubMed  Google Scholar 

  • Matus A (1988). Microtubule-associated proteins: their potential role in determining neuronal morphology. Annu Rev Neurosci, 11(1): 29–44

    CAS  PubMed  Google Scholar 

  • Minamide L S, Striegl AM, Boyle J A, Meberg P J, Bamburg J R (2000). Neurodegenerative stimuli induce persistent ADF/cofilin-actin rods that disrupt distal neurite function. Nat Cell Biol, 2(9): 628–636

    CAS  PubMed  Google Scholar 

  • Mitchison T J, Cramer L P (1996). Actin-based cell motility and cell locomotion. Cell, 84(3): 371–379

    CAS  PubMed  Google Scholar 

  • Mockrin S C, Korn E D (1980). Acanthamoeba profilin interacts with Gactin to increase the rate of exchange of actin-bound adenosine 5′-triphosphate. Biochemistry, 19(23): 5359–5362

    CAS  PubMed  Google Scholar 

  • Morfini G, Pigino G, Mizuno N, Kikkawa M, Brady S T (2007). Tau binding to microtubules does not directly affect microtubule-based vesicle motility. J Neurosci Res, 85(12): 2620–2630

    CAS  PubMed  Google Scholar 

  • Moriwaki A, Lu Y F, Tomizawa K, Matsui H (1998). An immunosuppressant, FK506, protects against neuronal dysfunction and death but has no effect on electrographic and behavioral activities induced by systemic kainate. Neuroscience, 86(3): 855–865

    CAS  PubMed  Google Scholar 

  • Morrison BM, Shu IW, Wilcox A L, Gordon JW, Morrison J H (2000). Early and selective pathology of light chain neurofilament in the spinal cord and sciatic nerve of G86R mutant superoxide dismutase transgenic mice. Exp Neurol, 165(2): 207–220

    CAS  PubMed  Google Scholar 

  • Munoz D G, Greene C, Perl D P, Selkoe D J (1988). Accumulation of phosphorylated neurofilaments in anterior horn motoneurons of amyotrophic lateral sclerosis patients. J Neuropathol Exp Neurol, 47(1): 9–18

    CAS  PubMed  Google Scholar 

  • Niebroj-Dobosz I, Dziewulska D, Janik P (2006). Auto-antibodies against proteins of spinal cord cells in cerebrospinal fluid of patients with amyotrophic lateral sclerosis (ALS). Folia neuropathologica / Association of Polish Neuropathologists and Medical Research Centre. Polish Academy of Sciences, 44: 191–196

    CAS  Google Scholar 

  • Nishida E, Iida K, Yonezawa N, Koyasu S, Yahara I, Sakai H (1987). Cofilin is a component of intranuclear and cytoplasmic actin rods induced in cultured cells. Proc Natl Acad Sci USA, 84(15): 5262–5266

    CAS  PubMed  Google Scholar 

  • Niwa R, Nagata-Ohashi K, Takeichi M, Mizuno K, Uemura T (2002). Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. Cell, 108(2): 233–246

    CAS  PubMed  Google Scholar 

  • Okamoto K, Nagai T, Miyawaki A, Hayashi Y (2004). Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity. Nat Neurosci, 7(10): 1104–1112

    CAS  PubMed  Google Scholar 

  • Ouyang Y, Yang X F, Hu X Y, Erbayat-Altay E, Zeng L H, Lee J M, Wong M (2007). Hippocampal seizures cause depolymerization of filamentous actin in neurons independent of acute morphological changes. Brain Res, 1143: 238–246

    CAS  PubMed Central  PubMed  Google Scholar 

  • Patrick G N, Zukerberg L, Nikolic M, de la Monte S, Dikkes P, Tsai L H (1999). Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature, 402(6762): 615–622

    CAS  PubMed  Google Scholar 

  • Pavlik L L, Moshkov D A (1991). Actin in synaptic cytoskeleton during long-term potentiation in hippocampal slices. Acta Histochem Suppl, 41(Supp 41): 257–264

    CAS  PubMed  Google Scholar 

  • Pérez-Ollé R, López-Toledano M A, Goryunov D, Cabrera-Poch N, Stefanis L, Brown K, Liem R K (2005). Mutations in the neurofilament light gene linked to Charcot-Marie-Tooth disease cause defects in transport. J Neurochem, 93(4): 861–874

    PubMed  Google Scholar 

  • Perrot R, Berges R, Bocquet A, Eyer J (2008). Review of the multiple aspects of neurofilament functions, and their possible contribution to neurodegeneration. Mol Neurobiol, 38(1): 27–65

    CAS  PubMed  Google Scholar 

  • Powell K J, Hori S E, Leslie R, Andrieux A, Schellinck H, Thorne M, Robertson G S (2007). Cognitive impairments in the STOP null mouse model of schizophrenia. Behav Neurosci, 121(5): 826–835

    PubMed  Google Scholar 

  • Prineas J W, Ouvrier R A, Wright R G, Walsh J C, McLeod J G (1976). Gian axonal neuropathy—a generalized disorder of cytoplasmic microfilament formation. J Neuropathol Exp Neurol, 35(4): 458–470

    CAS  PubMed  Google Scholar 

  • Qiang L, Yu W, Andreadis A, Luo M, Baas P W (2006). Tau protects microtubules in the axon from severing by katanin. J Neurosci, 26(12): 3120–3129

    CAS  PubMed  Google Scholar 

  • Rao M V, Mohan P S, Kumar A, Yuan A, Montagna L, Campbell J, Veeranna, Espreafico EM, Julien J P, Nixon R A (2011). The myosin Va head domain binds to the neurofilament-L rod and modulates endoplasmic reticulum (ER) content and distribution within axons. PLoS ONE, 6(2): e17087

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ren Y, Jiang H, Yang F, Nakaso K, Feng J (2009). Parkin protects dopaminergic neurons against microtubule-depolymerizing toxins by attenuating microtubule-associated protein kinase activation. J Biol Chem, 284(6): 4009–4017

    CAS  PubMed  Google Scholar 

  • Ren Y, Zhao J, Feng J (2003). Parkin binds to alpha/beta tubulin and increases their ubiquitination and degradation. J Neurosci, 23(8): 3316–3324

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rex C S, Chen L Y, Sharma A, Liu J, Babayan A H, Gall C M, Lynch G (2009). Different Rho GTPase-dependent signaling pathways initiate sequential steps in the consolidation of long-term potentiation. J Cell Biol, 186(1): 85–97

    CAS  PubMed  Google Scholar 

  • Rossiter J P, Anderson L L, Yang F, Cole G M (2000). Caspase-cleaved actin (fractin) immunolabelling of Hirano bodies. Neuropathol Appl Neurobiol, 26(4): 342–346

    CAS  PubMed  Google Scholar 

  • Rossoll W, Jablonka S, Andreassi C, Kröning A K, Karle K, Monani U R, Sendtner M (2003). Smn, the spinal muscular atrophy-determining gene product, modulates axon growth and localization of beta-actin mRNA in growth cones of motoneurons. J Cell Biol, 163(4): 801–812

    CAS  PubMed  Google Scholar 

  • Rovelet-Lecrux A, Campion D (2012). Copy number variations involving the microtubule-associated protein tau in human diseases. Biochem Soc Trans, 40(4): 672–676

    CAS  PubMed  Google Scholar 

  • Roy S, Zhang B, Lee V M, Trojanowski J Q (2005). Axonal transport defects: a common theme in neurodegenerative diseases. Acta Neuropathol, 109(1): 5–13

    PubMed  Google Scholar 

  • Rubio M D, Haroutunian V, Meador-Woodruff J H (2012). Abnormalities of the Duo/Ras-related C3 botulinum toxin substrate 1/p21-activated kinase 1 pathway drive myosin light chain phosphorylation in frontal cortex in schizophrenia. Biol Psychiatry, 71(10): 906–914

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sánchez C, Arellano J I, Rodríguez-Sánchez P, Avila J, DeFelipe J, Díez-Guerra F J (2001). Microtubule-associated protein 2 phosphorylation is decreased in the human epileptic temporal lobe cortex. Neuroscience, 107(1): 25–33

    PubMed  Google Scholar 

  • Sánchez C, Díaz-Nido J, Avila J (2000). Phosphorylation of microtubule-associated protein 2 (MAP2) and its relevance for the regulation of the neuronal cytoskeleton function. Prog Neurobiol, 61(2): 133–168

    PubMed  Google Scholar 

  • Scheibel M E, Crandall P H, Scheibel A B (1974). The hippocampaldentate complex in temporal lobe epilepsy. A Golgi study. Epilepsia, 15(1): 55–80

    CAS  Google Scholar 

  • Schevzov G, Curthoys N M, Gunning P W, Fath T (2012). Functional diversity of actin cytoskeleton in neurons and its regulation by tropomyosin. Int Rev Cell Mol Biol, 298: 33–94

    CAS  PubMed  Google Scholar 

  • Schmidt M L, Lee V M, Trojanowski J Q (1989). Analysis of epitopes shared by Hirano bodies and neurofilament proteins in normal and Alzheimer’s disease hippocampus. Lab Invest, 60(4): 513–522

    CAS  PubMed  Google Scholar 

  • Schneider A B J, Biernat J, von Bergen M, Mandelkow E M, Mandelkow E M (1999). Phosphorylation that detaches tau protein from microtubules (Ser262, Ser214) also protects it against aggregation into Alzheimer paired helical filaments. Biochemistry, 38(12): 3549–3558

    CAS  PubMed  Google Scholar 

  • Scott W K, Nance M A, Watts R L, Hubble J P, Koller W C, Lyons K, Pahwa R, Stern M B, Colcher A, Hiner B C, Jankovic J, Ondo W G, Allen F H Jr, Goetz C G, Small G W, Masterman D, Mastaglia F, Laing N G, Stajich J M, Slotterbeck B, Booze M W, Ribble R C, Rampersaud E, West S G, Gibson R A, Middleton L T, Roses A D, Haines J L, Scott B L, Vance J M, Pericak-Vance M A (2001). Complete genomic screen in Parkinson disease: evidence for multiple genes. JAMA, 286(18): 2239–2244

    CAS  PubMed  Google Scholar 

  • Seitz A, Kojima H, Oiwa K, Mandelkow E M, Song Y H, Mandelkow E (2002). Single-molecule investigation of the interference between kinesin, tau and MAP2c. EMBO J, 21(18): 4896–4905

    CAS  PubMed  Google Scholar 

  • Shimizu H, Iwayama Y, Yamada K, Toyota T, Minabe Y, Nakamura K, Nakajima M, Hattori E, Mori N, Osumi N, Yoshikawa T (2006). Genetic and expression analyses of the STOP (MAP6) gene in schizophrenia. Schizophr Res, 84(2-3): 244–252

    PubMed  Google Scholar 

  • Sousa V L, Bellani S, Giannandrea M, Yousuf M, Valtorta F, Meldolesi J, Chieregatti E (2009). alpha-synuclein and its A30P mutant affect actin cytoskeletal structure and dynamics. Mol Biol Cell, 20(16): 3725–3739

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sternberger L A, Sternberger N H (1983). Monoclonal antibodies distinguish phosphorylated and nonphosphorylated forms of neuro-filaments in situ. Proc Natl Acad Sci USA, 80(19): 6126–6130

    CAS  PubMed  Google Scholar 

  • Sudo H, Baas P W (2011). Strategies for diminishing katanin-based loss of microtubules in tauopathic neurodegenerative diseases. Hum Mol Genet, 20(4): 763–778

    CAS  PubMed  Google Scholar 

  • Sweet R A, Henteleff R A, Zhang W, Sampson A R, Lewis D A (2009). Reduced dendritic spine density in auditory cortex of subjects with schizophrenia. Neuropsychopharmacology, 34(2): 374–389

    PubMed Central  PubMed  Google Scholar 

  • Takeuchi H, Kobayashi Y, Yoshihara T, Niwa J, Doyu M, Ohtsuka K, Sobue G (2002). Hsp70 and Hsp40 improve neurite outgrowth and suppress intracytoplasmic aggregate formation in cultured neuronal cells expressing mutant SOD1. Brain Res, 949(1–2): 11–22

    CAS  PubMed  Google Scholar 

  • Tiloca C, Ticozzi N, Pensato V, Corrado L, Del Bo R, Bertolin C, Fenoglio C, Gagliardi S, Calini D, Lauria G, Castellotti B, Bagarotti A, Corti S, Galimberti D, Cagnin A, Gabelli C, Ranieri M, Ceroni M, Siciliano G, Mazzini L, Cereda C, Scarpini E, Soraru G, Comi GP, D’Alfonso S, Gellera C, Ratti A, Landers JE, Silani V (2013). Screening of the PFN1 gene in sporadic amyotrophic lateral sclerosis and in frontotemporal dementia. Neurobiol Aging, 34:1517 e1519–1510

    PubMed  Google Scholar 

  • Torres-Benito L, Ruiz R, Tabares L (2012). Synaptic defects in spinal muscular atrophy animal models. Dev Neurobiol, 72(1): 126–133

    CAS  PubMed  Google Scholar 

  • Tortelli R, Ruggieri M, Cortese R, D’Errico E, Capozzo R, Leo A, Mastrapasqua M, Zoccolella S, Leante R, Livrea P, Logroscino G, Simone I L (2012). Elevated cerebrospinal fluid neurofilament light levels in patients with amyotrophic lateral sclerosis: a possible marker of disease severity and progression. Eur J Neurol, 19(12): 1561–1567

    CAS  PubMed  Google Scholar 

  • Trojanowski J Q, Lee VMY (2005). Rous-Whipple Award Lecture. The Alzheimer’s brain: finding out what’s broken tells us how to fix it. Am J Pathol, 167(5): 1183–1188

    CAS  PubMed  Google Scholar 

  • Tseng Y, An K M, Esue O, Wirtz D (2004). The bimodal role of filamin in controlling the architecture and mechanics of F-actin networks. J Biol Chem, 279(3): 1819–1826

    CAS  PubMed  Google Scholar 

  • van Blitterswijk M, Baker MC, Bieniek KF, Knopman DS, Josephs KA, Boeve B, Caselli R, Wszolek ZK, Petersen R, Graff-Radford NR, Boylan KB, Dickson DW, Rademakers R (2013). Profilin-1 mutations are rare in patients with amyotrophic lateral sclerosis and frontotemporal dementia. Amyotroph Lateral Scler Frontotemporal Degener 14:463–469

    PubMed  Google Scholar 

  • Wagner U, Utton M, Gallo J M, Miller C C (1996). Cellular phosphorylation of tau by GSK-3 beta influences tau binding to microtubules and microtubule organisation. J Cell Sci, 109(Pt 6): 1537–1543

    CAS  PubMed  Google Scholar 

  • Wong N K, He B P, Strong M J (2000). Characterization of neuronal intermediate filament protein expression in cervical spinal motor neurons in sporadic amyotrophic lateral sclerosis (ALS). J Neuropathol Exp Neurol, 59(11): 972–982

    CAS  PubMed  Google Scholar 

  • Wu C H, Fallini C, Ticozzi N, Keagle P J, Sapp P C, Piotrowska K, Lowe P, Koppers M, McKenna-Yasek D, Baron D M, Kost J E, Gonzalez-Perez P, Fox A D, Adams J, Taroni F, Tiloca C, Leclerc A L, Chafe S C, Mangroo D, Moore MJ, Zitzewitz J A, Xu Z S, van den Berg L H, Glass J D, Siciliano G, Cirulli E T, Goldstein D B, Salachas F, Meininger V, Rossoll W, Ratti A, Gellera C, Bosco D A, Bassell G J, Silani V, Drory V E, Brown R H Jr, Landers J E (2012). Mutations in the profilin 1 gene cause familial amyotrophic lateral sclerosis. Nature, 488(7412): 499–503

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xie Z, Srivastava D P, Photowala H, Kai L, Cahill M E, Woolfrey K M, Shum C Y, Surmeier D J, Penzes P (2007). Kalirin-7 controls activity-dependent structural and functional plasticity of dendritic spines. Neuron, 56(4): 640–656

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xu Z, Cork L C, Griffin J W, Cleveland D W (1993). Increased expression of neurofilament subunit NF-L produces morphological alterations that resemble the pathology of human motor neuron disease. Cell, 73(1): 23–33

    CAS  PubMed  Google Scholar 

  • Yang F, Jiang Q, Zhao J, Ren Y, Sutton M D, Feng J (2005). Parkin stabilizes microtubules through strong binding mediated by three independent domains. J Biol Chem, 280(17): 17154–17162

    CAS  PubMed  Google Scholar 

  • Yang N, Higuchi O, Ohashi K, Nagata K, Wada A, Kangawa K, Nishida E, Mizuno K (1998). Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature, 393(6687): 809–812

    CAS  PubMed  Google Scholar 

  • Yang S, Fifita J A, Williams K L, Warraich ST, Pamphlett R, Nicholson G A, Blair I P (2013). Mutation analysis and immunopathological studies of PFN1 in familial and sporadic amyotrophic lateral sclerosis. Neurobiol Aging, 34:2235 e2237–2210

    Google Scholar 

  • Yoshihara T, Yamamoto M, Hattori N, Misu K, Mori K, Koike H, Sobue G (2002). Identification of novel sequence variants in the neurofilament-light gene in a Japanese population: analysis of Charcot-Marie-Tooth disease patients and normal individuals. J Peripher Nerv Syst, 7(4): 221–224

    CAS  PubMed  Google Scholar 

  • Zeng L H, Xu L, Rensing N R, Sinatra P M, Rothman S M, Wong M (2007). Kainate seizures cause acute dendritic injury and actin depolymerization in vivo. J Neurosci, 27(43): 11604–11613

    CAS  PubMed  Google Scholar 

  • Zhang B, Carroll J, Trojanowski J Q, Yao Y, Iba M, Potuzak J S, Hogan A M L, Xie S X, Ballatore C, Smith A B 3rd, Lee V M L, Brunden K R (2012). The microtubule-stabilizing agent, epothilone D, reduces axonal dysfunction, neurotoxicity, cognitive deficits, and Alzheimerlike pathology in an interventional study with aged tau transgenic mice. J Neurosci, 32(11): 3601–3611

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang B, Maiti A, Shively S, Lakhani F, McDonald-Jones G, Bruce J, Lee E B, Xie S X, Joyce S, Li C, Toleikis PM, Lee VM, Trojanowski J Q (2005). Microtubule-binding drugs offset tau sequestration by stabilizing microtubules and reversing fast axonal transport deficits in a tauopathy model. Proc Natl Acad Sci USA, 102(1): 227–231

    CAS  PubMed  Google Scholar 

  • Zhang W, Benson D L (2001). Stages of synapse development defined by dependence on F-actin. J Neurosci, 21:5169–5181

    CAS  PubMed  Google Scholar 

  • Zhu Q, Couillard-Després S, Julien J P (1997). Delayed maturation of regenerating myelinated axons in mice lacking neurofilaments. Exp Neurol, 148(1): 299–316

    CAS  PubMed  Google Scholar 

  • Zou ZY, Sun Q, Liu MS, Li XG, Cui LY (2013). Mutations in the profilin 1 gene are not common in amyotrophic lateral sclerosis of Chinese origin. Neurobiol Aging, 34:1713 e1715–1716

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Fath.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suchowerska, A.K., Fath, T. Cytoskeletal changes in diseases of the nervous system. Front. Biol. 9, 5–17 (2014). https://doi.org/10.1007/s11515-014-1290-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11515-014-1290-6

Keywords

Navigation