Skip to main content

Advertisement

Log in

Improved robust tensor principal component analysis for accelerating dynamic MR imaging reconstruction

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Dynamic magnetic resonance imaging (dMRI) strikes a balance between reconstruction speed and image accuracy in medical imaging field. In this paper, an improved robust tensor principal component analysis (RTPCA) method is proposed to reconstruct the dynamic magnetic resonance imaging (MRI) from highly under-sampled K-space data. The MR reconstruction problem is formulated as a high-order low-rank tenor plus sparse tensor recovery problem, which is solved by robust tensor principal component analysis (RTPCA) with a new tensor nuclear norm (TNN). To further exploit the low-rank structures in multi-way data, the core matrix nuclear norm, extracted from the diagonal elements of the core tensor under tensor singular value decomposition (t-SVD) framework, is also integrated into TNN for enforcing the low-rank structure in MRI datasets. The experimental results show that the proposed method outperforms state-of-the-art methods in terms of both MR image reconstruction accuracy and computational efficiency on 3D and 4D experiment datasets, especially for 4D MR image reconstruction.

The flowchart of the proposed method to reconstruct the dynamic magnetic resonance imaging (MRI) from highly under-sampled K-space data in the kth iteration. To further exploit the low-rank structures in multi-way data, the core matrix nuclear norm, extracted from the diagonal elements of the core tensor under tensor singular value decomposition (t-SVD) framework, is also integrated into tensor nuclear norm (TNN) for enforcing the low-rank structure in MRI datasets. In each iteration, the first step is to get low-rank tensor ℓk − 1 by using soft thresholding on the singular values of ℓk − 1 = χk − 1 − ξk − 1, and an improved tensor nuclear norm method is proposed to process the low-rank tensor ℓk − 1 firstly. Then, the shrinkage operator is applied to ξk − 1 = χk − 1 − ℓk − 1 for sparse part ξk − 1. The final reconstructed d-MRI χk is obtained by enforcing data consistency that the residual in K-space is subtracted by the sum of the reconstructed low-rank tensor and sparse tensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Oost K, Kanneworff AG (2000) Compressed sensing MRI. Int Res Geogr Environ Educ 9:176–180

    Article  Google Scholar 

  2. Verma S, Turkbey B, Muradyan N, Rajesh A, Cornud F, Haider MA, Choyke PL, Harisinghani M (2012) Overview of dynamic contrast-enhanced MRI in prostate cancer diagnosis and management. Am J Roentgenol 198(6):1277–1288

    Article  Google Scholar 

  3. Feng L, Grimm R, Block KT et al (2014) Golden-angle radial sparse parallel MRI: combination of compressed sensing, parallel imaging, and golden-angle radial sampling for fast and flexible dynamic volumetric MRI. Magn Reson Med 72:707–717. https://doi.org/10.1002/mrm.24980

    Article  PubMed  Google Scholar 

  4. Luo J, Mou Z, Qin B et al (2018) A singular K-space model for fast reconstruction of magnetic resonance images from undersampled data. Med Biol Eng Comput 56:1211–1225. https://doi.org/10.1007/s11517-017-1763-2

    Article  PubMed  Google Scholar 

  5. Gamper U, Boesiger P, Kozerke S (2008) Compressed sensing in dynamic MRI. Magn Reson Med 59:365–373. https://doi.org/10.1002/mrm.21477

    Article  PubMed  Google Scholar 

  6. Otazo R, Kim D, Axel L, Sodickson DK (2010) Combination of compressed sensing and parallel imaging for highly accelerated first-pass cardiac perfusion MRI. Magn Reson Med 64:767–776. https://doi.org/10.1002/mrm.22463

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sandilya M, Nirmala SR (2017) Compressed sensing trends in magnetic resonance imaging. Eng Sci Technol an Int J 20:1342–1352. https://doi.org/10.1016/j.jestch.2017.07.001

    Article  Google Scholar 

  8. Lustig M, Donoho D, Pauly JM (2007) Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 58:1182–1195. https://doi.org/10.1002/mrm.21391

    Article  PubMed  Google Scholar 

  9. Zhong W, Li D, Wang L, Zhang M (2016) Low-rank plus sparse reconstruction using dictionary learning for 3D-MRI. In: 9th international congress on image and signal processing, biomedical engineering and informatics (CISP-BMEI) pp:1407–1411

  10. Xie Q, Zhao Q, Meng D, Xu Z (2017) Kronecker-basis-representation based tensor sparsity and its applications to tensor recovery. IEEE trans on pattern analysis and machine intelligence 40:1888–1902. https://doi.org/10.1109/TPAMI.2017.2734888

    Article  Google Scholar 

  11. Ula SC, Pedro AG et al (2016) Spatio-temporal MRI reconstruction by enforcing local and global regularity via dynamic total and nuclear norm minimization. In: IEEE 13th international symposium on biomedical imaging(ISBI), pp 306–309

    Google Scholar 

  12. Liu S, Cao J, Liu H et al (2018) Group sparsity with orthogonal dictionary and nonconvex regularization for exact MRI reconstruction. Inf Sci 451–452:161–179. https://doi.org/10.1016/j.ins.2018.03.064

    Article  Google Scholar 

  13. Christodoulou AG, Zhang H, Zhao B, Hitchens TK, Ho C, Liang ZP (2013) High-resolution cardiovascular MRI by integrating parallel imaging with low-rank and sparse modeling. IEEE Trans Biomed Eng 60(11):3083–3092

    Article  Google Scholar 

  14. Xu F, Han J, Wang Y et al (2017) Dynamic magnetic resonance imaging via nonconvex low-rank matrix approximation. IEEE Access 5:1958–1966. https://doi.org/10.1109/ACCESS.2017.2657645

    Article  Google Scholar 

  15. Lingala SG, Dibella E, Adluru G (2013) Accelerating free breathing myocardial perfusion MRI using multi-coil radial k − t SLR. Phys Med Biol 58:7309–7327. https://doi.org/10.1088/0031-9155/58/20/7309

    Article  PubMed  PubMed Central  Google Scholar 

  16. Trémoulhéac B, Dikaios N, Atkinson D et al (2014) Dynamic MR image reconstruction-separation from undersampled (k, t)-space via low-rank plus sparse prior. IEEE transactions on medical imaging 33(8):1689–1701

    Article  Google Scholar 

  17. Otazo R, Sodickson DK, Cande E (2015) Low-rank plus sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components. Magn Reson Med 73:1125–1136. https://doi.org/10.1002/mrm.25240

    Article  PubMed  Google Scholar 

  18. Zhao B, Haldar JP, Christodoulou AG et al (2012) Image reconstruction from highly undersampled (k, t)-space data with joint partial separability and sparsity constraints. IEEE transactions on medical imaging 31(9):1809–1820

    Article  Google Scholar 

  19. Lingala SG, Jacob M (2013) Blind compressive sensing dynamic MRI. IEEE Trans Med Imaging 32:1132–1145

    Article  Google Scholar 

  20. Rahmani M, Atia GK (2017) High dimensional low rank plus sparse matrix decomposition. IEEE Trans Signal Process 65:2004–2019

    Article  Google Scholar 

  21. Kolda TG, Bader BW (2009) Tensor decompositions and applications. SIAM Rev 51:455–500

    Article  Google Scholar 

  22. Rauhut H, Schneider R, Stojanac Ž (2017) Low rank tensor recovery via iterative hard thresholding. Linear Algebra Appl 523:220–262. https://doi.org/10.1016/j.laa.2017.02.028

    Article  Google Scholar 

  23. Sidiropoulos ND, Lathauwer D et al (2017) Tensor decomposition for signal processing and machine learning. IEEE Trans Signal Process 65:3551–3582. https://doi.org/10.1145/242224.242229

    Article  Google Scholar 

  24. Ying J, Lu H, Wei Q et al (2017) Hankel matrix nuclear norm regularized tensor completion for N-dimensional exponential signals. IEEE Trans Signal Process 65(14):3702–3717

    Article  Google Scholar 

  25. An J, Zhang X, Zhou H, Jiao L (2018) Tensor-based low-rank graph with multimanifold regularization for dimensionality reduction of hyperspectral images. IEEE Trans Geosci Remote Sens 56:4731–4746. https://doi.org/10.1109/TGRS.2018.2835514

    Article  Google Scholar 

  26. Derksen H (2016) On the nuclear norm and the singular value decomposition of tensor. Found Comput Math 16:779–811. https://doi.org/10.1007/s10208-015-9264-x

    Article  Google Scholar 

  27. Liu Y, Member S, Long Z, Zhu C (2018) Image completion using low tensor tree rank and total variation minimization. IEEE Trans Multimed:1. https://doi.org/10.1109/TMM.2018.2859026

  28. Xu Y, Wu Z et al (2018) Joint reconstruction and anomaly detection from compressive hyperspectral images using Mahalanobis distance-regularized tensor RPCA. IEEE Trans Geosci Remote Sens 56:2919–2930

    Article  Google Scholar 

  29. Zhou P, Lu C, Member S et al (2018) Tensor factorization for low-rank tensor completion. IEEE Trans Image Process 27:1152–1163

    Article  Google Scholar 

  30. He J, Liu Q, Christodoulou AG, Ma C, Lam F, Liang ZP (2016) Accelerated high-dimensional MR imaging with sparse sampling using low-rank tensors. IEEE Trans Med Imaging 35(9):2119–2129

    Article  Google Scholar 

  31. Huang J, Zhou G, Yu G (2019) Orthogonal tensor dictionary learning for accelerated dynamic MRI. Med Biol Eng Comput 57:1933–1946. https://doi.org/10.1007/s11517-019-02005-x13

    Article  PubMed  Google Scholar 

  32. Yu Y, Jin J, Liu F, Crozier S (2014) Multidimensional compressed sensing MRI using tensor decomposition-based sparsifying transform. PLoS One 9:1–13. https://doi.org/10.1371/journal

    Article  Google Scholar 

  33. Roohi SF, Zonoobi D, Kassim AA, Jaremko JL (2017) Multi-dimensional low rank plus sparse decomposition for reconstruction of under-sampled dynamic MRI. Pattern Recogn 63:667–679. https://doi.org/10.1016/j.patcog.30.31.32

    Article  Google Scholar 

  34. Lu C, Feng J, Chen Y et al (2016) Tensor robust principal component analysis: exact recovery of corrupted low-rank tensors via convex optimization. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit:5249–5257. https://doi.org/10.1109/CVPR.2016.567

  35. Chen L, Liu Y, Zhu C (2018) Robust tensor principal component analysis in all modes. In: 2018 IEEE Int Conf Multimed Expo, pp 1–6

    Google Scholar 

  36. Liu Y, Member S, Chen L, Zhu C (2018) Improved robust tensor principle component analysis via low rank core matrix. IEEE J Sel Top Signal Process:1. https://doi.org/10.1109/JSTSP.2018.2873142

  37. Zhang C, Hu W, Jin T, Mei Z (2018) Nonlocal image denoising via adaptive tensor nuclear norm minimization. Neural Comput Applic 29:3–19. https://doi.org/10.1007/s00521-015-2050-5

    Article  Google Scholar 

  38. Lu C, Feng J, Chen Y et al (2019) Tensor robust principle component analysis with a new tensor nuclear norm. IEEE Trans Pattern Anal Mach Intell

  39. Cao W, Wang Y, Sun J, Meng D, Yang C, Cichocki A, Xu Z (2016) Total variation regularized tensor RPCA for background subtraction from compressive measurements. IEEE Trans Image Process 25:4075–4090. https://doi.org/10.1109/TIP.2016.2579262

    Article  PubMed  Google Scholar 

  40. Rasch J, Kolehmainen V, Nivajarvi R et al (2018) Dynamic MRI reconstruction from undersampled data with an anatomical prescan. Inverse Probl 34:074001. https://doi.org/10.1088/1361-6420/aac3af

    Article  Google Scholar 

  41. Wang S, Ke Z, Cheng H et al (2018) DIMENSION: dynamic MR imaging with both k-space and spatial prior knowledge obtained via multi-supervised network training. NMR Biomed. https://doi.org/10.1002/nbm.4131

  42. Wang, S, Chen, Y, Xiao, T, Ke, Z, Liu, Q, & Zheng, H (2019) LANTERN: learn analysis transform network for dynamic magnetic resonance imaging with small dataset. arXiv preprint arXiv:1908.09140

Download references

Acknowledgments

This work is supported in part by the National Natural Science Foundation of China (61672466 and  61671405), Joint Fund of Zhejiang Provincial Natural Science Foundation (LSZ19F010001), the Key Research and Development Program of Zhejiang Province (2020C03060), Natural Science Foundation of Zhejiang Province (LY18D060009), and this work is also supported by the 521 Talents project of Zhejiang Sci-Tech University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Li.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix I. Robust principal component analysis model based on matrix and tensor

The RPCA decomposes a matrix \( X\in {\mathrm{R}}^{N_1\times {N}_2} \) into a low-rank matrix L and a sparse component S, and forms the following convex optimization problem:

$$ \underset{L,S}{\min }{\left\Vert L\right\Vert}_{\ast }+\lambda {\left\Vert S\right\Vert}_1,\kern0.5em s.t.X=L+S $$

where ‖L‖∗ is the matrix nuclear norm, which is the sum of the singular values of matrix L, and ‖S‖1 denotes the l1 norm of matrix S.

The RTPCA decomposes 3-order tensor \( \chi \in {\mathrm{R}}^{N_1\times {N}_2\times {N}_3} \) into a low-rank tensor and sparse tensor as follows: χ = ℓ + ξ, where ℓ and ξ denote the low-rank component and sparse component respectively. Thus,

$$ \underset{\ell, \xi }{\min }{\left\Vert \ell \right\Vert}_{\ast }+{\left\Vert \xi \right\Vert}_1,\kern1em s.t.\kern0.5em \ell +\xi =\chi $$

RPCA is classical principal component analysis that has been widely used for data processing problems. However, it is based on matrix mode. It is natural to consider extending RPCA to manipulate the tensor data by taking advantages of its multi-dimensional structure. Robust tensor principal component analysis extracts the low-rank and sparse component of multi-dimensional data by t-SVD, which can be used for many data analysis problems. RTPCA has been applied to three groups of numerical experiments on image denoising, face images, and motion separation in videos.

Appendix II The tensor singular value decomposition operator

Given a 3-order tensor \( \chi \in {\mathrm{R}}^{N_1\times {N}_2\times {N}_3} \), N1, N2, and N3 are the 1th, 2th, and 3thdimensions of χ. The t-SVD is given by χ = U ∗ S ∗ VH, where U and V are orthogonal tensors of size N1 × N1 × N3 and N2 × N2 × N3, respectively, and S is an f-diagonal tensor. This t-SVD is constructed as follows: tensor χ is transformed into Fourier domain, and let \( \overline{\chi}\left(:,:,i\right)={\overline{U}}^{(i)}{\overline{S}}^{(i)}{\left({\overline{V}}^{(i)}\right)}^H \) be matrix singular value decomposition for frontal slices \( i=1,\dots, \left\lceil \frac{N_3+1}{2}\right\rceil \). For frontal slices \( i=\left\lceil \frac{N_3+1}{2}\right\rceil +1,\dots, {N}_3, \)let\( {\overline{U}}^{(i)}=\mathrm{conj}\left({\overline{U}}^{\left({N}_3-i+2\right)}\right) \),\( {\overline{S}}^{(i)}={\overline{S}}^{\left({N}_3-i+2\right)} \), and \( {\overline{V}}^{(i)}==\mathrm{conj}\left({\overline{V}}^{\left({N}_3-i+2\right)}\right). \) This processing scheme on all frontal slices is consistent with tensor-tensor product mode. Notice that the work reduces the number of singular value decomposition (SVD) to \( \left\lceil \frac{N_3+1}{2}\right\rceil \), while the previous works require computing SVD N3times; therefore, computation efficiency of this novel tensor nuclear norm is improved significantly when N3 is large [37].

T-SVD method for the 3-order tensor

Input: \( \chi \in {\mathrm{R}}^{N_1\times {N}_2\times {N}_3} \)

1. Compute \( \overline{\chi}\leftarrow \mathrm{fft}\left(\chi, \left[\right],3\right), \)

2. Compute each frontal slice of \( \overline{U},\kern0.5em \overline{S} \) and \( \overline{V} \) from the \( \overline{\chi} \) by

for i = 1, ... , to \( \left\lceil \frac{N_3+1}{2}\right\rceil \) do

[\( {\overline{\mathrm{U}}}^{\left(\mathrm{i}\right)},{\overline{\mathrm{S}}}^{\left(\mathrm{i}\right)},{\overline{\mathrm{V}}}^{\left(\mathrm{i}\right)} \)] = SVD(χ(:,  : , i)),

end for

for \( i=\left\lceil \frac{N_3+1}{2}\right\rceil +1,...,{N}_3 \) do

\( {\overline{\mathrm{U}}}^{\left(\mathrm{i}\right)}=\mathrm{conj}\left({\overline{\mathrm{U}}}^{\left({N}_3-\mathrm{i}+2\right)}\right); \)

\( {\overline{\mathrm{S}}}^{\left(\mathrm{i}\right)}={\overline{\mathrm{S}}}^{\left({N}_3-\mathrm{i}+2\right)}; \)

\( {\overline{\mathrm{V}}}^{\left(\mathrm{i}\right)}=\mathrm{conj}\left({\overline{\mathrm{V}}}^{\left({N}_3-\mathrm{i}+2\right)}\right); \)

end for

3. \( U\leftarrow \mathrm{ifft}\left(\overline{U},\left[\right],3\right),S\leftarrow \mathrm{ifft}\left(\overline{S},\left[\right],3\right),V\leftarrow \mathrm{ifft}\left(\overline{V},\left[\right],3\right), \)

Output: U, S, V

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, M., Shen, Q., Li, Y. et al. Improved robust tensor principal component analysis for accelerating dynamic MR imaging reconstruction. Med Biol Eng Comput 58, 1483–1498 (2020). https://doi.org/10.1007/s11517-020-02161-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-020-02161-5

Keywords

Navigation