Skip to main content
Log in

Conformal embeddings of affine vertex algebras in minimal W-algebras II: decompositions

  • Published:
Japanese Journal of Mathematics Aims and scope

Abstract

We present methods for computing the explicit decomposition of the minimal simple affine W-algebra \({W_k(\mathfrak{g}, \theta)}\) as a module for its maximal affine subalgebra \({\mathscr{V}_k(\mathfrak{g}^{\natural})}\) at a conformal level k, that is, whenever the Virasoro vectors of \({W_k(\mathfrak{g}, \theta)}\) and \({\mathscr{V}_k(\mathfrak{g}^\natural)}\) coincide. A particular emphasis is given on the application of affine fusion rules to the determination of branching rules. In almost all cases when \({\mathfrak{g}^{\natural}}\) is a semisimple Lie algebra, we show that, for a suitable conformal level k, \({W_k(\mathfrak{g}, \theta)}\) is isomorphic to an extension of \({\mathscr{V}_k(\mathfrak{g}^{\natural})}\) by its simple module. We are able to prove that in certain cases \({W_k(\mathfrak{g}, \theta)}\) is a simple current extension of \({\mathscr{V}_k(\mathfrak{g}^{\natural})}\). In order to analyze more complicated non simple current extensions at conformal levels, we present an explicit realization of the simple W-algebra \({W_{k}(\mathit{sl}(4), \theta)}\) at k = −8/3. We prove, as conjectured in [3], that \({W_{k}(\mathit{sl}(4), \theta)}\) is isomorphic to the vertex algebra \({\mathscr{R}^{(3)}}\), and construct infinitely many singular vectors using screening operators. We also construct a new family of simple current modules for the vertex algebra \({V_k (\mathit{sl}(n))}\) at certain admissible levels and for \({V_k (\mathit{sl}(m \vert n)), m\ne n, m,n\geq 1}\) at arbitrary levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abe, T.: A \(\mathbb{Z}_2\)-orbifold model of the symplectic fermionic vertex operator superalgebra. Math. Z. 255, 755–792 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. D. Adamović, Representations of the \(N=2\) superconformal vertex algebra, Internat. Math. Res. Notices, 1999, 61–79.

  3. Adamović, D.: A realization of certain modules for the \(N=4\) superconformal algebra and the affine Lie algebra \(A_2^{(1)}\). Transform. Groups 21, 299–327 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. D. Adamović, The vertex algebras \(\fancyscript{R}^{(p)}\) and their logarithmic representations, in preparation.

  5. Adamović, D.; Kac, V.G.; Möseneder Frajria, P.; Papi, P.; Perše, O.: Finite vs. infinite decompositions in conformal embeddings. Comm. Math. Phys. 348, 445–473 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. D. Adamović, V.G. Kac, P. Möseneder Frajria, P. Papi and O. Perše, Conformal embeddings of affine vertex algebras in minimal \(W\)-algebras I: structural results, preprint, arXiv:1602.04687; to appear in J. Algebra, doi:10.1016/j.jalgebra.2016.12.005.

  7. Adamović, D.; Milas, A.: Vertex operator algebras associated to modular invariant representations for \(A_1^{(1)}\). Math. Res. Lett. 2, 563–575 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Adamović, D.; Milas, A.: On the triplet vertex algebra \(\fancyscript{W}(p)\). Adv. Math. 217, 2664–2699 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Adamović, D.; Perše, O.: Some general results on conformal embeddings of affine vertex operator algebras. Algebr. Represent. Theory 16, 51–64 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Adamović, D.; Perše, O.: Fusion rules and complete reducibility of certain modules for affine Lie algebras. J. Algebra Appl. 13, 1350062 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Arakawa, T.: Representation theory of superconformal algebras and the Kac-Roan-Wakimoto conjecture. Duke Math. J. 130, 435–478 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Arakawa, T.: Rationality of admissible affine vertex algebras in the category \(\fancyscript{O}\). Duke Math. J. 165, 67–93 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. B. Bakalov and V.G. Kac, Field algebras, Int. Math. Res. Not., 2003, 123–159.

  14. B. Bakalov and V.G. Kac, Generalized vertex algebras, In: Lie Theory and Its Applications in Physics. VI, (eds. H.-D. Doebner and V.K. Dobrev), Heron Press, Sofia, 2006, pp. 3–25.

  15. T. Creutzig, \(W\)-algebras for Argyres–Douglas theories, preprint, arXiv:1701.05926.

  16. De Sole, A.; Kac, V.G.: Finite vs affine \(W\)-algebras. Jpn. J. Math. 1, 137–261 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dong, C.: Vertex algebras associated with even lattices. J. Algebra 161, 245–265 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  18. C. Dong and J. Lepowsky, Generalized Vertex Algebras and Relative Vertex Operators, Progr. Math., 112, Birkhäuser Boston, Boston, MA, 1993.

  19. Dong, C.; Li, H.; Mason, G.: Simple currents and extensions of vertex operator algebras. Comm. Math. Phys. 180, 671–707 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dong, C.; Li, H.; Mason, G.: Regularity of rational vertex operator algebras. Adv. Math. 132, 148–166 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. B.L. Feigin and A.M. [Semikhatov, The \(\hat{\it sl\it }(2)+\hat{\it sl\it }(2)/\hat{\it sl\it }(2)\) coset theory as a Hamiltonian reduction of \(\hat{D}(2\vert 1;\alpha )\), Nuclear Phys. B, 610 (2001), 489–530.

  22. I.B. Frenkel, Y.-Z. Huang and J. Lepowsky, On Axiomatic Approaches to Vertex Operator Algebras and Modules, Mem. Amer. Math. Soc., 104, no. 494, Amer. Math. Soc., Providence, RI, 1993.

  23. Frenkel, I.B.; Zhu, Y.: Vertex operator algebras associated to representations of affine and Virasoro algebras. Duke Math. J. 66, 123–168 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gorelik, M.; Kac, V.G.: On simplicity of vacuum modules. Adv. Math. 211, 621–677 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. M. Gorelik, V.G. Kac, P. Möseneder Frajria and P. Papi, Denominator identities for finite-dimensional Lie superalgebras and Howe duality for compact dual pairs, Jpn. J. Math., 7 (2012), 41–134.

  26. Kac, V.G.: Lie superalgebras. Advances in Math. 26, 8–96 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  27. V.G. Kac, Vertex Algebras for Beginners. Second ed., Univ. Lecture Ser., 10, Amer. Math. Soc., Providence, RI, 1998.

  28. V.G. Kac, P. Möseneder Frajria, P. Papi and F. Xu, Conformal embeddings and simple current extensions, Int. Math. Res. Not. IMRN, 2015, 5229–5288.

  29. Kac, V.G.; Roan, S.-S.; Wakimoto, M.: Quantum reduction for affine superalgebras. Comm. Math. Phys. 241, 307–342 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kac, V.G.; Wakimoto, M.: Modular invariant representations of infinite-dimensional Lie algebras and superalgebras. Proc. Nat. Acad. Sci. U.S.A. 85, 4956–4960 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  31. V.G. Kac and M. Wakimoto, Classification of modular invariant representations of affine algebras, In: Infinite Dimensional Lie Algebras and Groups, Adv. Ser. Math. Phys., 7, World Sci. Publ., Teaneck, NJ, 1989, pp. 138–177.

  32. Kac, V.G.; Wakimoto, M.: Quantum reduction and representation theory of superconformal algebras. Adv. Math. 185, 400–458 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kac, V.G.; Wakimoto, M.: Corrigendum to: "Quantum reduction and representation theory of superconformal algebras". Adv. Math. 193, 453–455 (2005)

    Article  MathSciNet  Google Scholar 

  34. V.G. Kac and W. Wang, Vertex operator superalgebras and their representations, In: Mathematical Aspects of Conformal and Topological Field Theories and Quantum Groups, Contemp. Math., 175, Amer. Math. Soc., Providence, RI, 1994, pp. 161–191.

  35. Kazhdan, D.; Lusztig, G.: Tensor structures arising from affine Lie algebras. I, II. J. Amer. Math. Soc. 6(905–947), 949–1011 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  36. Li, H.: Certain extensions of vertex operator algebras of affine type. Comm. Math. Phys. 217, 653–696 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  37. Li, H.; Xu, X.: A characterization of vertex algebras associated to even lattices. J. Algebra 173, 253–270 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhu, Y.: Modular invariance of characters of vertex operator algebras. J. Amer. Math. Soc. 9, 237–302 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dražen Adamović.

Additional information

Communicated by: Yasuyuki Kawahigashi

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adamović, D., Kac, V.G., Möseneder Frajria, P. et al. Conformal embeddings of affine vertex algebras in minimal W-algebras II: decompositions. Jpn. J. Math. 12, 261–315 (2017). https://doi.org/10.1007/s11537-017-1621-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11537-017-1621-x

Keywords and phrases

Mathematics Subject Classification (2010)

Navigation