Skip to main content

Advertisement

Log in

Modelling the Immune Response to Cancer: An Individual-Based Approach Accounting for the Difference in Movement Between Inactive and Activated T Cells

  • Original Article
  • Published:
Bulletin of Mathematical Biology Aims and scope Submit manuscript

Abstract

A growing body of experimental evidence indicates that immune cells move in an unrestricted search pattern if they are in the pre-activated state, whilst they tend to stay within a more restricted area upon activation induced by the presence of tumour antigens. This change in movement is not often considered in the existing mathematical models of the interactions between immune cells and cancer cells. With the aim to fill such a gap in the existing literature, in this work we present a spatially structured individual-based model of tumour–immune competition that takes explicitly into account the difference in movement between inactive and activated immune cells. In our model, a Lévy walk is used to capture the movement of inactive immune cells, whereas Brownian motion is used to describe the movement of antigen-activated immune cells. The effects of activation of immune cells, the proliferation of cancer cells and the immune destruction of cancer cells are also modelled. We illustrate the ability of our model to reproduce qualitatively the spatial trajectories of immune cells observed in experimental data of single-cell tracking. Computational simulations of our model further clarify the conditions for the onset of a successful immune action against cancer cells and may suggest possible targets to improve the efficacy of cancer immunotherapy. Overall, our theoretical work highlights the importance of taking into account spatial interactions when modelling the immune response to cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Figure 2b: Image 1, Image 3, used with permission, from (Boissonnas et al. 2007) (Color figure online)

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahmed MD, Bae YS et al (2014) Dendritic cell-based therapeutic cancer vaccines: past, present and future. Clin Exp Vaccine Res 3(2):113–116

    Article  Google Scholar 

  • Al-Tameemi M, Chaplain MAJ, d’Onofrio A (2012) Evasion of tumours from the control of the immune system: consequences of brief encounters. Biol Direct 7(1):31–31

    Article  Google Scholar 

  • Andersen R, Donia M, Ellebaek E, Borch TH, Kongsted P, Iversen TZ et al (2016) Long-lasting complete responses in patients with metastatic melanoma after adoptive cell therapy with tumor-infiltrating lymphocytes and an attenuated IL-2 regimen. Clin Cancer Res 22(15):3734–3745

    Article  Google Scholar 

  • Ariel G, Rabani A, Benisty S, Partridge JD, Harshey RM, Be’Er A (2015) Swarming bacteria migrate by Lévy walk. Nat Commun 6:8396

    Article  Google Scholar 

  • Bartumeus F, Raposo EP, Viswanathan GM, da Luz MGE (2014) Stochastic optimal foraging: tuning insensitive and extensive dynamics in random searches. PLoS ONE 9(9):e106,373

    Article  Google Scholar 

  • Basu R, Whitlock BM, Husson J, Le Floch A, Jin W, Oyler-Yaniv A, Dotiwala F, Giannone G, Hivroz C, Biais N et al (2016) Cytotoxic T cells use mechanical force to potentiate target cell killing. Cell 165(1):100–110

    Article  Google Scholar 

  • Bellomo N, Delitala M (2008) From the mathematical kinetic, and stochastic game theory to modelling mutations, onset, progression and immune competition of cancer cells. Phys Life Rev 5(4):183–206

    Article  Google Scholar 

  • Bianca C, Chiacchio F, Pappalardo F, Pennisi M (2012) Mathematical modeling of the immune system recognition to mammary carcinoma antigen. BMC Bioinform 13(17 Supplement):S21

    Article  Google Scholar 

  • Boissonnas A, Fetler L, Zeelenberg IS, Hugues S, Amigorena S (2007) In vivo imaging of cytotoxic T cell infiltration and elimination of a solid tumor. J Exp Med 204(2):345–356

    Article  Google Scholar 

  • Bunimovich-Mendrazitsky S, Byrne H, Stone L (2008) Mathematical model of pulsed immunotherapy for superficial bladder cancer. Bull Math Biol 70(7):2055–2076

    Article  MathSciNet  MATH  Google Scholar 

  • Butterfield LH (2013) Dendritic cells in cancer immunotherapy clinical trials: are we making progress? Front Immunol 4:454

    Article  Google Scholar 

  • Carreno BM, Magrini V, Becker-Hapak M, Kaabinejadian S, Hundal J, Petti AA, Ly A, Lie WR, Hildebrand WH, Mardis ER et al (2015) A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science 348(6236):803–808

    Article  Google Scholar 

  • Casal A, Sumen C, Reddy TE, Alber MS, Lee PP (2005) Agent-based modeling of the context dependency in T cell recognition. J Theor Biol 236(4):376–391

    Article  Google Scholar 

  • Cattani C, Ciancio A, d’Onofrio A (2010) Metamodeling the learning-hiding competition between tumours and the immune system: a kinematic approach. Math Comput Model 52(1):62–69

    Article  MathSciNet  MATH  Google Scholar 

  • Celli S, Day M, Müller AJ, Molina-Paris C, Lythe G, Bousso P (2012) How many dendritic cells are required to initiate a T-cell response? Blood 120(1):3945–3948

    Article  Google Scholar 

  • Chowdhury D, Sahimi M, Stauffer D (1991) A discrete model for immune surveillance, tumor immunity and cancer. J Theor Biol 152(2):263–270

    Article  Google Scholar 

  • Christophe C, Müller S, Rodrigues M, Petit AE, Cattiaux P, Dupré L, Gadat S, Valitutti S (2015) A biased competition theory of cytotoxic T lymphocyte interaction with tumor nodules. PLoS ONE 10(3):e0120,053

    Article  Google Scholar 

  • de Pillis LG, Mallet DG, Radunskaya AE (2006) Spatial tumor-immune modeling. Comput Math Meth Med 7(2–3):159–176

    Article  MathSciNet  MATH  Google Scholar 

  • Delitala M, Lorenzi T (2013) Recognition and learning in a mathematical model for immune response against cancer. Discrete Contin Dyn Syst Ser B 18(4):891–914

    Article  MathSciNet  MATH  Google Scholar 

  • Detcheverry F (2017) Generalized run-and-turn motions: from bacteria to Lévy walks. Phys Rev E 96(1):012,415

    Article  Google Scholar 

  • d’Onofrio A, Ciancio A (2011) Simple biophysical model of tumor evasion from immune system control. Phys Rev E 84(3):031,910

    Article  Google Scholar 

  • Engelhardt JJ, Boldajipour B, Beemiller P, Pandurangi P, Sorensen C, Werb Z, Egeblad M, Krummel MF (2012) Marginating dendritic cells of the tumor microenvironment cross-present tumor antigens and stably engage tumor-specific T cells. Cancer Cell 21(3):402–417

    Article  Google Scholar 

  • Frascoli F, Kim PS, Hughes BD, Landman KA (2014) A dynamical model of tumour immunotherapy. Math Biosci 253:50–62

    Article  MathSciNet  MATH  Google Scholar 

  • Fricke GM, Letendre KA, Moses ME, Cannon JL (2016) Persistence and adaptation in immunity; T cells balance the extent and thoroughness of search. PLoS Comput Biol 12(3):e1004818

    Article  Google Scholar 

  • Frigault MJ, Maus MV (2016) Chimeric antigen receptor-modified T cells strike back. Int Immunol. https://doi.org/10.1093/intimm/dxw018

    Google Scholar 

  • Garg AD, Coulie PG, Van den Eynde BJ, Agostinis P (2017) Integrating next-generation dendritic cell vaccines into the current cancer immunotherapy landscape. Trends Immunol 1392:1–17

    Google Scholar 

  • Garrido F, Cabrera T, Aptsiauri N (2010) Hard and soft lesions underlying the HLA class I alterations in cancer cells: implications for immunotherapy. Int J Cancer 127(2):249–256

    Google Scholar 

  • Goya GF, Marcos-Campos I, Fernandez-Pacheco R, Saez B, Godino J, Asin L, Lambea J, Tabuenca P, Mayordomo JI, Larrad L et al (2008) Dendritic cell uptake of iron-based magnetic nanoparticles. Cell Biol Int 32(8):1001–1005

    Article  Google Scholar 

  • Gross G, Eshhar Z (2016) Therapeutic potential of T cell chimeric antigen receptors (CARs) in cancer treatment: counteracting off-tumor toxicities for safe CAR T cell therapy. Annu Rev Pharmacol Toxicol 56:59–83

    Article  Google Scholar 

  • Halle S, Keyser KA, Stahl FR, Busche A, Marquardt A, Zheng X, Galla M, Heissmeyer V, Heller K, Boelter J et al (2016) In vivo killing capacity of cytotoxic T cells is limited and involves dynamic interactions and T cell cooperativity. Immunity 44(2):233–245

    Article  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  Google Scholar 

  • Harris TH, Banigan EJ, Christian DA, Konradt C, Wojno EDT, Norose K, Wilson EH, John B, Weninger W, Luster AD et al (2012) Generalized Lévy walks and the role of chemokines in migration of effector CD8+ T cells. Nature 486(7404):545–548

    Article  Google Scholar 

  • Hersey P, Zhang X (2001) How melanoma cells evade trail-induced apoptosis. Nat Rev Cancer 1(2):142–150

    Article  Google Scholar 

  • Hu WY, Zhong WR, Wang FH, Li L, Shao YZ (2012) In silico synergism and antagonism of an anti-tumour system intervened by coupling immunotherapy and chemotherapy: a mathematical modelling approach. Bull Math Biol 74(2):434–452

    Article  MathSciNet  MATH  Google Scholar 

  • Ikeda H (2016) T-cell adoptive immunotherapy using tumor-infiltrating T cells and genetically engineered TCR-T cells. Int Immunol. https://doi.org/10.1093/intimm/dxw022

    Google Scholar 

  • Joshi B, Wang X, Banerjee S, Tian H, Matzavinos A, Chaplain MAJ (2009) On immunotherapies and cancer vaccination protocols: a mathematical modelling approach. J Theor Biol 259:820–827

    Article  MathSciNet  Google Scholar 

  • Kolev M (2003) Mathematical modeling of the competition between acquired immunity and cancer. Int J of Appl Math Comput Sci 13:289–296

    MathSciNet  MATH  Google Scholar 

  • Krummel MF, Bartumeus F, Gérard A (2016) T-cell migration, search strategies and mechanisms. Nat Rev Immunol 16(3):193–201

    Article  Google Scholar 

  • Kuznetsov VA, Knott GD (2001) Modeling tumor regrowth and immunotherapy. Math Comput Model 33(12):1275–1287

    Article  MathSciNet  MATH  Google Scholar 

  • Kuznetsov VA, Makalkin IA, Taylor MA, Perelson AS (1994) Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis. Bull Math Biol 56(2):295–321

    Article  MATH  Google Scholar 

  • Li X, Yang A, Huang H, Zhang X, Town J, Davis B, Cockcroft DW, Gordon JR (2010) Induction of type 2 T helper cell allergen tolerance by IL-10-differentiated regulatory dendritic cells. Am J Respir Cell Mol Biol 42(2):190–199

    Article  Google Scholar 

  • Lim DS, Kim JH, Lee DS, Yoon CH, Bae YS (2007) DC immunotherapy is highly effective for the inhibition of tumor metastasis or recurrence, although it is not efficient for the eradication of established solid tumors. Cancer Immunol Immunother 56(11):1817–1829

    Article  Google Scholar 

  • Lin Erickson AH, Wise A, Fleming S, Baird M, Lateef Z, Molinaro A, Teboh-Ewungkem M, de Pillis LG (2009) A preliminary mathematical model of skin dendritic cell trafficking and induction of T cell immunity. Discrete Contin Dyn Syst Ser B 12:323–336

    Article  MathSciNet  MATH  Google Scholar 

  • Lorenzi T, Chisholm RH, Melensi M, Lorz A, Delitala M (2015) Mathematical model reveals how regulating the three phases of T-cell response could counteract immune evasion. Immunology 146(2):271–280

    Article  Google Scholar 

  • Matzavinos A, Chaplain MAJ, Kuznetsov VA (2004) Mathematical modelling of the spatio-temporal response of cytotoxic T-lymphocytes to a solid tumour. Math Med Biol 21(1):1–34

    Article  MATH  Google Scholar 

  • Messerschmidt JL, Prendergast GC, Messerschmidt GL (2016) How cancers escape immune destruction and mechanisms of action for the new significantly active immune therapies: helping non-immunologists decipher recent advances. Oncologist 21(2):233–243

    Article  Google Scholar 

  • Modiano JF, Bellgrau D (2016) Fas ligand based immunotherapy: a potent and effective neoadjuvant with checkpoint inhibitor properties, or a systemically toxic promoter of tumor growth? Discov Med 21(114):109–116

    Google Scholar 

  • Pappalardo F, Musumeci S, Motta S (2008) Modeling immune system control of atherogenesis. Bioinformatics 24(15):1715–1721

    Article  Google Scholar 

  • Pitt JM, Marabelle A, Eggermont A, Soria JC, Kroemer G, Zitvogel L (2016) Targeting the tumor microenvironment: removing obstruction to anticancer immune responses and immunotherapy. Ann Oncol 8:1482–1492

    Article  Google Scholar 

  • Prue RL, Vari F, Radford KJ, Tong H, Hardy MY, DRozario R, Waterhouse NJ, Rossetti T, Coleman R, Tracey C et al (2015) A phase I clinical trial of CD1c (BDCA-1)+ dendritic cells pulsed with HLA-A* 0201 peptides for immunotherapy of metastatic hormone refractory prostate cancer. J Immunother 38(2):71–76

    Article  Google Scholar 

  • Rozenberg G (2011) Microscopic haematology: a practical guide for the laboratory, chap B4: Lymphocytes, 3rd edn. Elsevier, Amsterdam, p 106

    Google Scholar 

  • Sato T, Terai M, Yasuda R, Watanabe R, Berd D, Mastrangelo MJ, Hasumi K (2004) Combination of monocyte-derived dendritic cells and activated T cells which express CD40 ligand: a new approach to cancer immunotherapy. Cancer Immunol Immunother 53(1):53–61

    Article  Google Scholar 

  • Schreibelt G, Bol KF, Westdorp H, Wimmers F, Aarntzen EHJG, Duiveman-de Boer T, van de Rakt MWMM, Scharenborg NM, de Boer AJ, Pots JM et al (2016) Effective clinical responses in metastatic melanoma patients after vaccination with primary myeloid dendritic cells. Clin Cancer Res 22(9):2155–2166

    Article  Google Scholar 

  • Spranger S (2016) Mechanisms of tumor escape in the context of the T-cell-inflamed and the non-T-cell-inflamed tumor microenvironment. Int Immunol. https://doi.org/10.1093/intimm/dxw014

    Google Scholar 

  • Stewart TJ, Abrams SI (2008) How tumours escape mass destruction. Oncogene 27(45):5894–5903

    Article  Google Scholar 

  • Takayanagi T, Ohuchi A (2001) A mathematical analysis of the interactions between immunogenic tumor cells and cytotoxic T lymphocytes. Microbiol Immunol 45(10):709–715

    Article  Google Scholar 

  • Tan MP, Gerry AB, Brewer JE, Melchiori L, Bridgeman JS, Bennett AD, Pumphrey NJ, Jakobsen BK, Price DA, Ladell K et al (2015) T cell receptor binding affinity governs the functional profile of cancer-specific CD8+ T cells. Clin Exp Immunol 180(2):255–270

    Article  Google Scholar 

  • Tel J, Aarntzen EHJG, Baba T, Schreibelt G, Schulte BM, Benitez-Ribas D, Boerman OC, Croockewit S, Oyen WJG, van Rossum M et al (2013) Natural human plasmacytoid dendritic cells induce antigen-specific T-cell responses in melanoma patients. Cancer Res 73(3):1063–1075

    Article  Google Scholar 

  • Weinberg RA (2007a) Crowd control: tumour immunology and immunotherapy. In: Weinberg RA (ed) The biology of cancer, chap 15. Garland Science, New York, pp 655–724

    Google Scholar 

  • Weinberg RA (2007b) Moving out: invasion and metastasis. In: Weinberg RA (ed) The biology of cancer, chap 14. Garland Science, New York, pp 587–654

    Google Scholar 

  • Weninger W, Biro M, Jain R (2014) Leukocyte migration in the interstitial space of non-lymphoid organs. Nat Rev Immunol 14(1):232–246

    Article  Google Scholar 

  • Wilgenhof S, Van Nuffel AMT, Corthals J, Heirman C, Tuyaerts S, Benteyn D, De Coninck A, Van Riet I, Verfaillie G, Vandeloo J et al (2011) Therapeutic vaccination with an autologous mRNA electroporated dendritic cell vaccine in patients with advanced melanoma. J Immunother 34(5):448–456

    Article  Google Scholar 

  • Wilgenhof S, Corthals J, Heirman C, van Baren N, Lucas S, Kvistborg P, Thielemans K, Neyns B (2016) Phase II study of autologous monocyte-derived mRNAelectroporated dendritic cells (TriMixDC-MEL) plus ipilimumab in patients with pretreated advanced melanoma. J Clin Oncol 34(12):1330–1338

    Article  Google Scholar 

  • Wilkie KP, Hahnfeldt P (2013) Mathematical models of immune-induced cancer dormancy and the emergence of immune evasion. Interface Focus 3(4):20130010

    Article  Google Scholar 

  • Wolf K, Müller R, Borgmann S, Bröcker EB, Friedl P (2003) Amoeboid shape change and contact guidance: T-lymphocyte crawling through firbrillar collagen is independent of matrix remodelling by MMPs and other proteases. Blood 102(9):3262–3269

    Article  Google Scholar 

  • Wosniack MA, Santos MC, Raposo EP, Viswanathan GM, da Luz MGE (2017) The evolutionary origins of Lévy walk foraging. PLoS Comput Biol 13(10):e1005,774

    Article  Google Scholar 

  • Yarchoan M, Johnson BA, Lutz ER, Laheru DA, Jaffee EM (2017) Targeting neoantigens to augment antitumour immunity. Nat Rev Cancer 17(1):209–222

    Article  Google Scholar 

  • Ye Q, Loisiou M, Levine BL, Suhoski MM, Riley JL, June CH, Coukos G, Powell DJ (2011) Engineered artificial antigen presenting cells facilitate direct and efficient expansion of tumor infiltrating lymphocytes. J Transl Med 9(1):131

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fiona R. Macfarlane.

Additional information

F. R. Macfarlane funded by the Engineering and Physical Sciences Research Council (EPSRC).

Electronic supplementary material

Appendix

Appendix

See Figs. 9, 10 and Table 2.

Fig. 9
figure 9

Increasing the number of DCs can lead to longer tumour removal times. Heat maps showing the time evolution of the number of tumour cells for 40 different numbers of immune cells (left panels) and selected samples of the time evolution of the number of tumour cells for 4 different numbers of immune cells (right panels). In all cases under consideration, at the beginning of simulations the tumour contained 1200 cells. Top panels: Increasing the CTL number \(N_{C}\), we observe a general decrease in tumour removal time. Middle panels: Increasing the DC number \(N_{D}\) above a certain threshold leads to longer tumour removal time. Bottom panels: Increasing both \(N_{C}\) and \(N_{D}\) causes a decrease in tumour removal time (Color figure online)

Fig. 10
figure 10

The ratio between the killing rate of tumour cells by CTLs and the tumour cell proliferation rate is a crucial parameter in tumour removal. Heat maps showing the evolution of the total number of tumour cells over time for 40 different values of the rate at which CTLs kill tumour cells, \(\mu \), and/or the tumour cell proliferation rate, \(\lambda \) (left panels). Sample time evolutions of the tumour cell number for 4 values of \(\mu \) and/or \(\lambda \) (right panels). In all cases under consideration, at the beginning of simulations the tumour contained 1200 cells. Top panels: Varying \(\mu \), we observe a decrease in tumour removal time with increasing values of \(\mu \), with little difference between the larger values. Middle panels: Varying \(\lambda \) results in an increase in tumour removal time with increasing \(\lambda \) and eventually a larger number of tumour cells remaining. Bottom panels: Varying both \(\lambda \) and \(\mu \) at equal ratios results in a decrease in tumour removal time for increasing values of \(\mu \) and \(\lambda \), although (in general) is slower than the case where only \(\mu \) is altered (Color figure online)

Table 2 Values of parameters used in the model

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Macfarlane, F.R., Lorenzi, T. & Chaplain, M.A.J. Modelling the Immune Response to Cancer: An Individual-Based Approach Accounting for the Difference in Movement Between Inactive and Activated T Cells. Bull Math Biol 80, 1539–1562 (2018). https://doi.org/10.1007/s11538-018-0412-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11538-018-0412-8

Keywords

Navigation