Skip to main content

Advertisement

Log in

On the accuracy of optically tracked transducers for image-guided transcranial ultrasound

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Transcranial focused ultrasound (FUS) is increasingly being explored to modulate neuronal activity. To target neuromodulation, researchers often localize the FUS beam onto the brain region(s) of interest using spatially tracked tools overlaid on pre-acquired images. Here, we quantify the accuracy of optically tracked image-guided FUS with magnetic resonance imaging (MRI) thermometry, evaluate sources of error and demonstrate feasibility of these procedures to target the macaque somatosensory region.

Methods

We developed an optically tracked FUS system capable of projecting the transducer focus onto a pre-acquired MRI volume. To measure the target registration error (TRE), we aimed the transducer focus at a desired target in a phantom under image guidance, heated the target while imaging with MR thermometry and then calculated the TRE as the difference between the targeted and heated locations. Multiple targets were measured using either an unbiased or bias-corrected calibration. We then targeted the macaque S1 brain region, where displacement induced by the acoustic radiation force was measured using MR acoustic radiation force imaging (MR-ARFI).

Results

All calibration methods enabled registration with TRE on the order of 3 mm. Unbiased calibration resulted in an average TRE of 3.26 mm (min–max: 2.80–4.53 mm), which was not significantly changed by prospective bias correction (TRE of 3.05 mm; 2.06–3.81 mm, p = 0.55). Restricting motion between the transducer and target and increasing the distance between tracked markers reduced the TRE to 2.43 mm (min–max: 0.79–3.88 mm). MR-ARFI images showed qualitatively similar shape and extent as projected beam profiles in a living non-human primate.

Conclusions

Our study describes methods for image guidance of FUS neuromodulation and quantifies errors associated with this method in a large animal. The workflow is efficient enough for in vivo use, and we demonstrate transcranial MR-ARFI in vivo in macaques for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hynynen K, Darkazanli A, Unger E, Schenck JF (1993) MRI-guided noninvasive ultrasound surgery. Med Phys 20:107–115. https://doi.org/10.1118/1.597093

    Article  CAS  PubMed  Google Scholar 

  2. Wan H et al (1996) Ultrasound surgery: comparison of strategies using phased array systems. IEEE Trans Ultrason Ferroelectr Freq Control 43(6):1085–1098

    Article  Google Scholar 

  3. Mestas JL, Fowler RA, Evjen TJ, Somaglino L, Moussatov A, Ngo J, Chesnais S, Rognvaldsson S, Fossheim SL, Nilssen EA, Lafon C (2014) Therapeutic efficacy of the combination of doxorubicin-loaded liposomes with inertial cavitation generated by confocal ultrasound in AT2 dunning rat tumour model. J Drug Target 22:688–697. https://doi.org/10.3109/1061186X.2014.906604

    Article  CAS  PubMed  Google Scholar 

  4. ter Haar G, Coussios C (2007) High intensity focused ultrasound: physical principles and devices. Int J Hyperth 23:89–104. https://doi.org/10.1080/02656730601186138

    Article  Google Scholar 

  5. Unga J, Hashida M (2014) Ultrasound induced cancer immunotherapy. Adv Drug Deliv Rev 72:144–153. https://doi.org/10.1016/j.addr.2014.03.004

    Article  CAS  PubMed  Google Scholar 

  6. Hu Z, Yang XY, Liu Y, Morse MA, Lyerly HK, Clay TM, Zhong P (2006) Investigation of HIFU-induced anti-tumor immunity in a murine tumor model. AIP Conf Proc 829:241–245. https://doi.org/10.1063/1.2205474

    Article  Google Scholar 

  7. Kennedy JE, ter Haar GR, Cranston D (2003) High intensity focused ultrasound: surgery of the future? Br J Radiol 76:590–599. https://doi.org/10.1259/bjr/17150274

    Article  CAS  PubMed  Google Scholar 

  8. McDannold N (2005) Quantitative MRI-based temperature mapping based on the proton resonant frequency shift: review of validation studies. Int J Hyperth 21:533–546. https://doi.org/10.1080/02656730500096073

    Article  CAS  Google Scholar 

  9. Quesson B, Vimeux F, Salomir R, De Zwart JA, Moonen CTW (2002) Automatic control of hyperthermic therapy based on real-time fourier analysis of MR temperature maps. Magn Reson Med 47:1065–1072. https://doi.org/10.1002/mrm.10176

    Article  PubMed  Google Scholar 

  10. Clement GT, White PJ, King RL, McDannold N, Hynynen K (2005) A magnetic resonance imaging-compatible, large-scale array for trans-skull ultrasound surgery and therapy. J Ultrasound Med 24:1117–1125. https://doi.org/10.7863/jum.2005.24.8.1117

    Article  PubMed  Google Scholar 

  11. Hynynen K, Clement GT, McDannold N, Vykhodtseva N, King R, White PJ, Vitek S, Jolesz FA (2004) 500-Element ultrasound phased array system for noninvasive focal surgery of the brain: a preliminary rabbit study with ex vivo human skulls. Magn Reson Med 52:100–107. https://doi.org/10.1002/mrm.20118

    Article  PubMed  Google Scholar 

  12. Hand JW, Shaw A, Sadhoo N, Rajagopal S, Dickinson RJ, Gavrilov LR (2009) A random phased array device for delivery of high intensity focused ultrasound. Phys Med Biol 54:5675–5693. https://doi.org/10.1088/0031-9155/54/19/002

    Article  CAS  PubMed  Google Scholar 

  13. Savic LJ, De Lin M, Duran R, Schernthaner RE, Hamm B, Geschwind J-F, Hong K, Chapiro J (2015) Three-dimensional quantitative assessment of lesion response to MR-guided high-intensity focused ultrasound treatment of uterine fibroids. Acad Radiol. https://doi.org/10.1016/j.acra.2015.05.008

    Article  PubMed  PubMed Central  Google Scholar 

  14. King RL, Brown JR, Pauly KB (2014) Localization of ultrasound-induced in vivo neurostimulation in the mouse model. Ultrasound Med Biol 40:1512–1522. https://doi.org/10.1016/j.ultrasmedbio.2014.01.020

    Article  PubMed  Google Scholar 

  15. Kim H, Chiu A, Lee SD, Fischer K, Yoo SS (2014) Focused ultrasound-mediated non-invasive brain stimulation: examination of sonication parameters. Brain Stimul 7:748–756. https://doi.org/10.1016/j.brs.2014.06.011

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ye PP, Brown JR, Pauly KB (2016) Frequency dependence of ultrasound neurostimulation in the mouse brain. Ultrasound Med Biol. https://doi.org/10.1016/j.ultrasmedbio.2016.02.012

    Article  PubMed  PubMed Central  Google Scholar 

  17. Airan RD, Meyer RA, Ellens NPK, Rhodes KR, Farahani K, Pomper MG, Kadam SD, Green JJ (2017) Noninvasive targeted transcranial neuromodulation via focused ultrasound gated drug release from nanoemulsions. Nano Lett 17:652–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wu S-Y, Aurup C, Sanchez CS, Grondin J, Zheng W, Kamimura H, Ferrera VP, Konofagou EE (2018) Efficient blood-brain barrier opening in primates with neuronavigation-guided ultrasound and real-time acoustic mapping. Sci Rep 8:7978. https://doi.org/10.1038/s41598-018-25904-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Szablowski JO, Lee-Gosselin A, Lue B, Malounda D, Shapiro MG (2018) Acoustically targeted chemogenetics for the non-invasive control of neural circuits. Nat Biomed Eng 2:475

    Article  CAS  PubMed  Google Scholar 

  20. Kim H, Chiu A, Park S, Yoo SS (2012) Image-guided navigation of single-element focused ultrasound transducer. Int J Imaging Syst Technol 22:177–184. https://doi.org/10.1002/ima.22020

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lee W, Kim H, Jung Y, Song I-U, Chung YA, Yoo S-S (2015) Image-guided transcranial focused ultrasound stimulates human primary somatosensory cortex. Sci Rep 5:8743. https://doi.org/10.1038/srep08743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang P-F, Phipps MA, Newton AT, Chaplin V, Gore JC, Caskey CF, Chen LM (2018) Neuromodulation of sensory networks in monkey brain by focused ultrasound with MRI guidance and detection. Sci Rep. https://doi.org/10.1038/s41598-018-26287-7

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hinsche AF, Smith RM (2001) Image-guided surgery. Curr Orthop 15:296–303. https://doi.org/10.1054/cuor.2001.0198

    Article  Google Scholar 

  24. Azagury DE, Dua MM, Barrese JC, Henderson JM, Buchs NC, Ris F, Cloyd JM, Martinie JB, Razzaque S, Nicolau S, Soler L, Marescaux J, Visser BC (2015) Image-guided surgery. Curr Probl Surg 52:476–520. https://doi.org/10.1067/j.cpsurg.2015.10.001

    Article  PubMed  Google Scholar 

  25. Lindseth F et al (2013) Ultrasound-based guidance and therapy. In: Advancements and breakthroughs in ultrasound imaging. IntechOpen. https://doi.org/10.5772/55884

  26. Perrin DP, Vasilyev NV, Novotny P, Stoll J, Howe RD, Dupont PE, Salgo IS, del Nido PJ (2009) Image guided surgical interventions. Curr Probl Surg 46:730–766. https://doi.org/10.1067/j.cpsurg.2009.04.001

    Article  PubMed  Google Scholar 

  27. West JB, Maurer CR (2004) Designing optically tracked instruments for image-guided surgery. IEEE Trans Med Imaging 23:533–545. https://doi.org/10.1109/TMI.2004.825614

    Article  PubMed  Google Scholar 

  28. Fitzpatrick JM, West JB, Maurer CR (1998) Predicting error in rigid-body point-based registration. IEEE Trans Med Imaging 17:694–702. https://doi.org/10.1109/42.736021

    Article  CAS  PubMed  Google Scholar 

  29. Miga MI, Roberts DW, Kennedy FE, Platenik LA, Hartov A, Lunn KE, Paulsen KD (2001) Modeling of retraction and resection for intraoperative updating of images. Neurosurgery 49:75–85. https://doi.org/10.1227/00006123-200107000-00012

    Article  CAS  PubMed  Google Scholar 

  30. Conley RH, Meszoely IM, Weis JA, Pheiffer TS, Arlinghaus LR, Yankeelov TE, Miga MI (2015) Realization of a biomechanical model-assisted image guidance system for breast cancer surgery using supine MRI. Int J Comput Assist Radiol Surg 10:1985–1996. https://doi.org/10.1007/s11548-015-1235-9

    Article  PubMed  PubMed Central  Google Scholar 

  31. Burlew MM, Madsen EL, Zagzebski JA, Banjavic RA, Sum SW (1980) A new ultrasound tissue-equivalent material. Radiology 134:517–520

    Article  CAS  PubMed  Google Scholar 

  32. Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin J-C, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M (2012) 3D slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging 30:1323–1341

    Article  PubMed  PubMed Central  Google Scholar 

  33. Rieke V, Pauly KB (2008) MR thermometry. J Magn Reson Imaging 27:376–390. https://doi.org/10.1002/jmri.21265

    Article  PubMed  PubMed Central  Google Scholar 

  34. Steinmeier R, Rachinger J, Kaus M, Ganslandt O, Huk W, Fahlbusch R (2000) Factors influencing the application accuracy of neuronavigation systems. Stereotact Funct Neurosurg 75:188–202. https://doi.org/10.1159/000048404

    Article  CAS  PubMed  Google Scholar 

  35. Jonathan S, Phipps MA, Chaplin VL, Singh A, Yang PF, Newton AT, Gore JC, Chen LM, Caskey CF, Grissom WA (2018) Optical tracking-guided MR-ARFI for targeting focused ultrasound neuromodulationin non-human primates. In: Grissom WA, Caskey CF (eds) In The 18th international society of therapeutic ultrasound, pp 176–178. Nashville

  36. Labadie RF, Davis BM, Fitzpatrick JM (2005) Image-guided surgery: what is the accuracy? Curr Opin Otolaryngol Head Neck Surg 13:27–31

    Article  PubMed  Google Scholar 

  37. Wiles AD, Likholyot A, Frantz DD, Peters TM (2008) A statistical model for point-based target registration error with anisotropic fiducial localizer error. IEEE Trans Med Imaging 27:378–390. https://doi.org/10.1109/TMI.2007.908124

    Article  PubMed  Google Scholar 

  38. McDannold N, Maier SE (2008) Magnetic resonance acoustic radiation force imaging. Med Phys 35:3748–3758. https://doi.org/10.1118/1.2956712

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hertzberg Y, Volovick A, Zur Y, Medan Y, Vitek S, Navon G (2010) Ultrasound focusing using magnetic resonance acoustic radiation force imaging: application to ultrasound transcranial therapy. Med Phys 37:2934–2942. https://doi.org/10.1118/1.3395553

    Article  CAS  PubMed  Google Scholar 

  40. Lee W, Kim H-C, Jung Y, Chung YA, Song I-U, Lee J-H, Yoo S-S (2016) Transcranial focused ultrasound stimulation of human primary visual cortex. Sci Rep 6:34026. https://doi.org/10.1038/srep34026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by National Institutes of Health Grants 5T32EB014841, R24 MH109105, and the Focused Ultrasound Foundation. We would also like to acknowledge expert assistance from George Wilson and Chaohui Tang for animal handling support and Tom Manuel for assistance with computer-aided design.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. F. Caskey.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 125 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaplin, V., Phipps, M.A., Jonathan, S.V. et al. On the accuracy of optically tracked transducers for image-guided transcranial ultrasound. Int J CARS 14, 1317–1327 (2019). https://doi.org/10.1007/s11548-019-01988-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-019-01988-0

Keywords

Navigation