Skip to main content
Log in

Prospects for live higher resolution video streaming to mobile devices: achievable quality across wireless links

  • Special Issue Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

From a review of the literature and a range of experiments, this paper demonstrates that live video streaming to mobile devices with pixel resolutions from Standard Definition up to 4K Ultra High Definition (UHD) is now becoming feasible by means of high-throughput IEEE 802.11ad at 60 GHz or 802.11ac at 5 GHz, and 4K UHD streaming is even possible with 802.11n operating at 5 GHz. The paper, by a customized implementation, also shows that real-time compression, assisted by graphical processing units at 4K UHD, is also becoming feasible. The paper further considers the impact of packet loss on H.264/AVC and HEVC codec compressed video streams in terms of structural similarity index video quality. It additionally gives an indication of wireless network latencies and currently feasible frame rates. Findings suggest that, for medium-range transmission, the video quality may be acceptable at low packet loss rates. For hardware-accelerated 4K UHD encoding, standard frame rates may be possible but appropriate higher frame rates are only just being reached in hardware implementations. The target bitrate was found to be important in determining the display quality, which depends on the coding complexity of the video content. Higher compressed bitrates are recommended, as video quality may improve disproportionately as a result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abe, A., Walker, S.D.: Multi-hop 802.11ad wireless H.264 video streaming. In: IEEE Int. Conf. on Telecomms. and Sig. Proc., pp. 94–99. IEEE, Vienna, Austria (2016). https://doi.org/10.1109/TSP.2016.7760836

    Google Scholar 

  2. Adeyemi-Ejeye, A.O., Walker, S.D.: Uncompressed quad-1080p wireless video streaming. In: IEEE 4th Comput. Sci. and Electron. Eng. Conf., pp. 13–16. IEEE, Colchester, UK (2012). https://doi.org/10.1109/CEEC.2012.6375371

    Google Scholar 

  3. Adeyemi-Ejeye, A.O., Walker, S.D.: Ultra-high definition wireless video transmission using H. 264 over 802.11n WLAN: Challenges and performance evaluation. In: 12th Int. Conf. on Telecommuns., pp. 109–114. IEEE, Zagreb, Croatia (2013)

    Google Scholar 

  4. Adeyemi-Ejeye, A.O., Alreshoodi, M., Al-Jobouri, L., Fleury, M., Woods, J.: Packet loss visibility across SD, HD, 3D, and UHD video streams. J. Video Commun. Image Represent. 45, 95–106 (2017)

    Article  Google Scholar 

  5. Adeyemi-Ejeye, A.O., Alreshoodi, M., Walker, S.D.: Implementation of 4kUHD HEVC-content transmission. Multimed. Tools Appl. 76(17), 18099–18118 (2017)

    Article  Google Scholar 

  6. Alreshoodi, M., Adeyemi-Ejeye, A.O., Al-Jobouri, L., Fleury, M., Al-Zahrani, B.: Packet loss visibility for higher resolution video on portable devices. In: IEEE Int. Conf. Consumer Electron., pp. 237–238. IEEE, Las Vega, NV, USA (2017). https://doi.org/10.1109/ICCE.2017.7889298

    Google Scholar 

  7. Bae, S.H., Kim, J., Kim, M., Cho, S.: Assessments of subjective video quality on HEVC-encoded 4K-UHD video for beyond-HDTV broadcasting services. IEEE Trans. Broadcast. 59(2), 209–222 (2013)

    Article  Google Scholar 

  8. Baykas, T., et al.: IEEE 802.15.3c: The first IEEE wireless standard for data rates over 1 Gb/s. IEEE Commun. Mag. 49(7), 114–121 (2011)

    Article  Google Scholar 

  9. Bejarano, O., Knightly, E.W.: IEEE 802.11ac: From channelization to multi-user MIMO. IEEE Commun. Mag. 51(10), 84–90 (2013)

    Article  Google Scholar 

  10. Bing, B.: 3D and HD Broadband Video Networking. Artech House, Boston (2007)

    Google Scholar 

  11. Bjøntegaard, G.: Calculation of average PSNR differences between RD-curves. VCEG Meeting, ITU-T SG16 Q.6, Austin, Texas, USA (2001)

  12. Borer, T., Cotton, A.: A “Display Independent” High Dynamic Range television system. BBC Research & Develop. White Paper, WHP 309 (2015)

  13. Bossen, F., Bross, B., Sühring, K., Flynn, D.: HEVC complexity and implementation analysis. IEEE Trans. Circuits Syst. Video Technol. 22(12), 1685–1696 (2012)

    Article  Google Scholar 

  14. Bossen, F.: Common HM Test Conditions and Software Reference Configurations. JVT-VC, Document JVTVC-LI1100, Geneva, Switzerland meeting (2013)

  15. Chen, W.-N., Hang, H.-M.: H.264/AVC motion estimation implementation on Compute Unified Device Architecture (CUDA). In: IEEE Int. Conf. Multimed. and Expo., pp. 697–700. IEEE, Hannover, Germany (2008). https://doi.org/10.1109/ICME.2008.4607350

    Google Scholar 

  16. Cheng, L., Liu, C., Dong, Z., Yu, J., Chang, G.-K.: 60-GHz and 100-GHz wireless transmission of High-Definition video services in converged Radio-over-Fiber systems. In: Conf. on Lasers and Electro-Optics, pp. 1–2. IEEE, San Jose, CA, USA (2013)

    Google Scholar 

  17. Choi, M., Lee, G., Jin, S., Koo, J., Kim, B., Choi, S.: Link adaptation for high-quality uncompressed video streaming in 60-GHz wireless networks. IEEE Trans. Multimed. 18(4), 627–642 (2016)

    Article  Google Scholar 

  18. Cordeiro, C.: Evaluation of medium access technologies for next generation millimeter-wave WLAN and WPAN. In: IEEE Int. Conf. Commun. Workshops, pp. 1–5. IEEE, Dresden, Germany (2009). https://doi.org/10.1109/ICCW.2009.5208112

    Google Scholar 

  19. Da Silva, T.L., Agostini, L.V., da Silva Cruz, D.A.: Fast HEVC intra prediction mode decision based on edge direction information. In: 20th Europ. Sig. Process. Conf, pp. 1214–1218. IEEE, Bucharest, Romania (2012)

    Google Scholar 

  20. De Simone, F., Naccari, M., Tagliasacchi, M., Dufaux, F., Tubaro, S., Ebrahimi, T.: Subjective assessment of H.264/AVC video sequences transmitted over a noisy channel. In: Int. Workshop on Quality of Multimed. Experience, pp. 204–209. IEEE, San Diego, CA, USA (2009). https://doi.org/10.1109/QOMEX.2009.5246952

    Google Scholar 

  21. Dianu, M.-D., Riihijärvi, J., Petrova, M.: Measurement-based study of the performance of IEEE 802.11ac in an indoor environment. In: IEEE Int.Conf. Commun., pp. 5771–5776. IEEE, Sydney, NSW, Australia (2014). https://doi.org/10.1109/ICC.2014.6884242

    Google Scholar 

  22. Dobrian, F., Sekar, V., Awan, A., Stoica, I., Joseph, D., Ganjam, A., Zhan, J., Zhang, H.: Understanding the impact of video quality on user engagement. In: ACM SIGCOMM, pp. 362–373. ACM, Toronto, Ontario, Canada (2011)

    Google Scholar 

  23. DVB: DVB Broadcast Asia 2014 exhibition & conference preview Singapore (2014). http://epublishbyus.com/ebook/ebook?id=10036869#/2

  24. Elemental Technologies: 4K Test sequences (2013). Portland, OR, USA. http://www.elementaltechnologies.com/resources/4k-test-sequences

  25. Emoto, M., Sugawara, M.: Critical fusion frequency for bright and wide field-of-view image display. J. Disp. Technol. 8(7), 424–429 (2012)

    Article  Google Scholar 

  26. Evans, J., Filsfils, C.: Deploying IP and MPLS QoS for Multiservice Networks. Morgan Kaufmann, San Francisco (2007)

    Google Scholar 

  27. Fleury, M.: Streaming uncompressed HD over wireless channels. In: Int. Broadcasting Conf. Amsterdam, Holland (2012)

  28. François, E., van de Kerkhof, L.: A single-layer HDR video coding framework with SDR compatibility. In: Int. Broadcast. Conf. SMPTE, Amsterdam, Holland (2016)

    Google Scholar 

  29. Ghanbari, M., Crawford, D., Fleury, M., Khan, E., Woods, J.: Future performance of video codecs. Research Report for Office of Commun (Ofcom), London (2006)

  30. Grois, D., Marpe, D., Nguyen, T., Hadar, O.: Comparative assessment of H.265/MPEG-HEVC, VP9, and H.264/MPEG-AVC encoders for low-delay video applications. In: SPIE Proc., vol. 9217, Applications of Digital Image Processing XXXVII, San Diego, CA, USA (2014). https://doi.org/10.1117/12.2073323

  31. Grois, D., Nguyen, T., Marpe, D.: Coding efficiency comparison of AVI/VP9, H.265/MPEG-HEVC, and H.264/MPEG-AVC encoders. In: Picture Coding Symp., Nuremburg, Germany (2016)

  32. Halák, J., Krsek, M., Ubik, S., Žejdl, P., Nevřela, F.: Real-time long distance transfer of uncompressed 4K video for remote collaboration. Futur. Gen. Comput. Syst. 27(7), 886–892 (2011)

    Article  Google Scholar 

  33. Hamidouche, W., Cocherel, G., Le Feuvre, J., Raulet, M., Déforges, O.: 4k real time video streaming with SHVC decoder and GPAC player. In: IEEE Int. Conf. on Multimed. and Expo Workshops. IEEE, Chengdu, China (2014). https://doi.org/10.1109/ICMEW.2014.6890613

    Google Scholar 

  34. Hanhart, P., Rerabek, M., De Simone, F., Ebrahimi, T.: Subjective quality evaluation of the upcoming HEVC video compression standard. EPFL Tech, Paper, Lausanne, Switzerland (2012)

  35. Harris, M.: Optimizing parallel reduction in CUDA. In: Proc. ACM SIGMOD, vol. 21. pp. 104–110 (2007)

  36. Heng, T.K., Asano, W., Itoh, T., Tanizawa, A., Yamaguchi, J., Matsuo, T., Kodama, T.: A highly parallelized H.265/HEVC real-time UHD software encoder. In: IEEE Int. Conf. on Image Process., pp. 1213–1217. IEEE, Paris, France (2014). https://doi.org/10.1109/ICIP.2014.7025242

    Google Scholar 

  37. Hoßfeld, T., Egger, S., Schatz, R., Fiedler, M., Masuch, K., Lorentzen, C.: Initial delay vs. interruptions: between the devil and the deep blue sea. In: 4th Int. Workshop QoMEX, pp. 1–6. Yarra Valley, VIC, Australia (2012). https://doi.org/10.1109/QoMEX.2012.6263849

  38. Horé, A., Ziou, D.: Image quality metrics: PSNR vs. SSIM. In: IEEE 20th Int. Conf. on Pattern Recognit., pp. 2366–2369. IEEE, Istanbul, Turkey (2010). https://doi.org/10.1109/ICPR.2010.579

    Google Scholar 

  39. Jiang, J., Sekar, V., Zhang, H.: Improving fairness, efficiency, and stability in HTTP-based adaptive video streaming with FESTIVE. IEEE/ACM Trans. Netw. 22(1), 326–340 (2014)

    Article  Google Scholar 

  40. Jin, G., Lee, H.-J.: A parallel and pipelined execution of H.264/AVC intra prediction. In: IEEE Int. Conf. on Comput. and Info. Technol. IEEE, Seoul, South Korea (2006)

    Google Scholar 

  41. Kamata, H., Kikuchi, H., Sykes, P.J.: Real-world live 4K Ultra HD broadcasting with High Dynamic Range. In: Int. Broadcast. Conf., Amsterdam, Holland (2016)

  42. Kim, J., Tian, Y., Mangold, S., Molisch, A.F.: Quality-aware coding and relaying for 60 GHz real-time wireless video broadcasting. In: IEEE Int. Conf. Commun., pp. 5148–5152. IEEE, Budapest, Hungary (2013). https://doi.org/10.1109/ICC.2013.6655400

    Google Scholar 

  43. Korhonen, J., Wang, Y.: Effect of packet size on loss rate and delay in wireless links. In: IEEE Wireless Comms. and Network. Conf., pp. 1608–1613. IEEE, New Orleans, LA, USA (2005). https://doi.org/10.1109/WCNC.2005.1424754

    Google Scholar 

  44. Kunić, S., Šego, Z.: Beyond HDTV technology. In: 55th Int. Symp. ELMAR, pp. 83–87 (2013)

  45. Lee, S., Kim, H., Eum, N.: Reduced complexity single core based HEVC video codec processor for mobile 4K-UHD applications. In: IEEE Int. Conf. on Consumer Electron., pp. 94–95. IEEE, Berlin, Germany (2016). https://doi.org/10.1109/ICCE-Berlin.2016.7684727

    Google Scholar 

  46. Lee, W., Lee, S., Kim, J.: Pipelined intra prediction using shuffled encoding order for H.264/AVC. In: IEEE Region 10 Conf., pp. 1–4. IEEE, Hong Kong, China (2006). https://doi.org/10.1109/TENCON.2006.343970

    Google Scholar 

  47. Li, B., Li, H., Li, L., Zhang, J.: λ-domain rate control algorithm for High Efficiency Video Coding. IEEE Trans. Image Process 23(9), 3841–3854 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  48. Li, B., Sullivan, G., Xu, J.: Comparison of compression performance of HEVC Draft 6 with AVC High Profile. In: JCTVCI0409 JCT-VC Meeting, Geneva, Switzerland (2012)

  49. Li, Z., Huang, Y., Liu, G., Wang, F., Zhang, Z.L., Dai, Y.: Cloud transcoder: Bridging the format and resolution gap between Internet video and mobile devices. In: ACM Int. Workshop on Network and Operating Syst. Support for Digital Audio and Video, pp. 33–38, Toronto, Ontario, Canada (2012). https://doi.org/10.1145/2229087.2229097

  50. Ma, J., Luo, F., Wang, S., Ma, S.: Flexible CTU-level parallel motion estimation by CPU and GPU pipeline for HEVC. In: IEEE Visual Commun. and Image Process., pp. 282–285. IEEE, Valletta, Malta (2014). https://doi.org/10.1109/VCIP.2014.7051559

    Google Scholar 

  51. Mahmouli, M.E., Walker, S.D.: 4-Gbps uncompressed video transmission over a 60-GHz Orbital Angular Momentum wireless channel. IEEE Wireless Commun. Lett. 2(2), 223–226 (2013)

    Article  Google Scholar 

  52. Mehendale, M., Das, S., Sharma, M., Mody, M., et al.: A true multi-standard, programmable, low-power, full HD video codec engine for smartphone HD SoC. In: IEEE Int. Solid State Conf., pp. 226–228. IEEE, San Francisco, CA, USA (2012). https://doi.org/10.1109/ISSCC.2012.6176986

    Google Scholar 

  53. Mukherjee, D., Bankoski, J., Grange, A., Han, J., Koleszar, J., Wilkins, P., Xu, Y., Bultje, R.: The latest open-source video codec VP9—An overview and preliminary results. In: Picture Coding Symp., pp. 390–393. IEEE, San Jose, CA, USA (2013). https://doi.org/10.1109/PCS.2013.6737765

    Google Scholar 

  54. Murakami, T.: The development and standardization of Ultra High Definition video technology. In: Mrak, G., Grgic, M., Kunt, M. (eds.) High-Quality Visual Experience. Signals and Commun. Technol, pp. 81–135. Springer, Berlin (2010)

    Chapter  Google Scholar 

  55. Nitsche, T., Cordeiro, C., Flores, A.B., Knightly, E.W., Perahia, E., Widmer, J.C.: IEEE 802.11ad: Directional 60 GHz communication for multi-Gbps Wi-Fi. IEEE Commun. Mag. 52(12), 132–141 (2014)

    Article  Google Scholar 

  56. Nvidia: Nvidia quadro NVS 450 (2008). http://www.nvidia.co.uk/object/product_quadro_nvs_450_uk.html

  57. NVIDIA. Developer: Video Encode and Decode GPU Support Matrix (2017). https://developer.nvidia.com/video-encode-decode-gpu-support-matrix

  58. Ohm, J., Sullivan, G., Schwarz, H., Tan, T., Wiegand, T.: Comparison of the coding efficiency of video coding standards—including high efficiency video coding (HEVC). IEEE Trans. Circuits Syst. Video Technol. 22(12), 1669–1684 (2012)

    Article  Google Scholar 

  59. Park, M., Gopalakrishnan, P.: Analysis on spatial reuse and interference in 60-GHz wireless networks. IEEE J. Sel. Areas Commun. 27(8), 1443–1452 (2009)

    Article  Google Scholar 

  60. Pastrana-Vidal, R.R., Gicquel, J.C., Colomes, C., Cherifi, H.: Sporadic frame dropping impact on quality perception. In: SPIE 5292, Human Vision and Electronic Imaging IX, San Jose, California, USA (2004). https://doi.org/10.1117/12.525746

  61. Paul, T.K., Ogunfunmi, T.: Wireless LAN comes of age: Understanding the IEEE 802.11n amendment. IEEE Circuits Syst. Mag. 8(1), 28–54 (2008)

    Article  Google Scholar 

  62. Perahia, E., Stacey, R.: Next Generation Wireless LANs: 802.11n and 802.11ac, 2nd edn. Cambridge Univ. Press, Cambridge (2013)

    Book  Google Scholar 

  63. Perez-Daniel, K.R., Sanchez, V.: Luma-aware multi-model rate-control for HDR content in HEVC. IEEE Int. Conf. on Image Process., pp. 1022–1026 (2017)

  64. Perkins, C.: RTP: Audio and Video for the Internet. Addison-Wesley, Boston (2003)

    Google Scholar 

  65. Pieters, B., Hollemeersch, C.F., Lambert, P., Van de Walle, R.: Motion estimation for H.264/AVC on multiple GPUs using NVIDIA CUDA. In: SPIE Appl. of Digital Image Process. XXII, vol. 7443 (2009). https://doi.org/10.1117/12.825995

  66. Pinson, M.H., Wolf, S., Cermak, G.: HDTV subjective quality of H.264 vs. MPEG-2, with and without packet loss. IEEE Trans. Broadcast. 56(1), 86–91 (2010)

    Article  Google Scholar 

  67. Poynton, C.: Digital Video and HDTV: Algorithms and Interfaces. Morgan Kaufmann, San Francisco (2003)

    Google Scholar 

  68. Rappaport, T.S., Heath, R.W. Jr., Daniels, C.R., Murdock, N.J.: Millimeter Wave Wireless Communications. Prentice Hall, Upper Saddle River (2014)

    Google Scholar 

  69. Ryu, Y., Park, K., Wee, J., Kwon, K.: An efficient 4K and 8K UHD transmission scheme on convergence networks with broadcasting and LTE by using coordinated multi-point transmission system. KSII Trans. Internet Info. Syst. 11(8), 4092–4104 (2017)

    Google Scholar 

  70. Saito, S., Shitomi, T., Asakura, S., Satou, A., Okano, M., Murayama, K., Tsuchida, K.: 8K terrestrial transmission field tests using dual-polarized MIMO and higher-order modulation OFDM. IEEE Trans. Broadcast 62(1), 306–315 (2016)

    Article  Google Scholar 

  71. Sanchez, V.: Fast intra-prediction for lossless coding of screen content in HEVC. In: IEEE Global Conf. on Sig. and Info. Process., pp. 1367–1371. IEEE, Orlando, FL, USA (2015). https://doi.org/10.1109/GlobalSIP.2015.7418422

    Google Scholar 

  72. Schulze, H., Lüders, C.: Theory and Applications of OFDM and CDMA. Wiley, Chichester (2005)

    Book  Google Scholar 

  73. Seufert, M., Egger, S., Slanina, M., Zinner, T., Hoßfeld, T., Tran-Gia, P.: A survey on quality of experience of HTTP adaptive streaming. IEEE Commun. Surv. Tutor. 17(1), 469–492 (2015)

    Article  Google Scholar 

  74. Shirai, D., Kawano, T., Fujii, T., Kaneko, K., Ohta, N., Ono, S., et al.: Real time switching and streaming transmission of uncompressed 4K motion pictures. Fut. Gen. Comput. Syst. 25(2), 192–197

  75. Shirai, D., Yamaguchi, T., Shimizu, T., Murooka, T., Fujii, T.: 4K SHD real-time video streaming system with JPEG 2000 parallel codec. In: IEEE Asia Pacific Conf. on Circ. and Systems, pp. 1855–1858 (2006)

  76. Singh, H., Niu, H., Xiangpin, Q., Shao, H., Kwon, C., et al.: Supporting uncompressed HD video streaming without retransmissions over 60 GHz wireless networks. In: IEEE Wireless Comms. and Network. Conf., pp. 1939–1944. IEEE, Las Vegas, NV, USA (2008). https://doi.org/10.1109/WCNC.2008.345

    Google Scholar 

  77. Sintel: Sintel 4K (2011). http://www.sintel.org/news/sintel-4kversion-available/

  78. Skordoulis, D., Qiang, N., Hsiao-Hwa, C., Stephens, A.P., Changwen, L., Jamalipour, A.: IEEE 802.11n MAC frame aggregation mechanisms for next-generation high-throughput WLANs. IEEE Wireless Commun. Mag. 15(1), 40–47 (2008)

    Article  Google Scholar 

  79. Sodagar, I.: The MPEG-DASH standard for multimedia streaming over the Internet. IEEE Multimed. 18(4), 62–67 (2011)

    Article  Google Scholar 

  80. Sugawara, M., Choi, S.-Y., Woods, D.: Ultra-high-definition television (Rec. ITU-R BT.2020): A generational leap in the evolution of television. IEEE Sig. Proc. Mag. 31(3), 170–174 (2014)

    Article  Google Scholar 

  81. Valdes-Garcia, A., Reynolds, S., Natarajan, A., et al.: Single-element and phased-array transceiver chipsets for 60-GHz Gb/s communications. IEEE Commun. Mag. 49(4), 120–131 (2011)

    Article  Google Scholar 

  82. van Kester, S., Xiao, T., Kooij, R.E., Brunnstróm, K., Ahmed, O.K.: Estimating the impact of single and multiple freezes on video quality. In: SPIE 7865, Human Vision and Electronic Imaging XVI (2011). https://doi.org/10.1117/12.873390

  83. Wang, X., Soni, L., Chen, M., Yang, J.: Paralleling variable block size motion estimation of HEVC on CPU plus GPU platform. In: IEEE Int. Conf. Multimed. and Expo., pp. 1–5. IEEE, San Jose, CA, USA (2013). https://doi.org/10.1109/ICMEW.2013.6618412

    Google Scholar 

  84. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  85. Wiegand, T., Sullivan, G., Bjøntegaard, G., Luthra, A.: Overview of the H.264/AVC video coding standard. IEEE Trans. Circuits Syst. Video Technol. 13(7), 1685–1696 (2003)

    Google Scholar 

  86. Wu, J., Yuen, C., Cheung, N.-M., Chen, J.: Delay-constrained high definition video transmission in heterogeneous wireless networks with multi-homed terminals. IEEE Trans. Mobile Comput. 15(3), 641–655 (2016)

    Article  Google Scholar 

  87. Wu, N., Wen, M., Su, H., Ren, J., Zhang, J.: A parallel H.264 encoder with CUDA: Mapping and evaluation. In: IEEE 18th Int. Conf. on Parallel and Distrib. Syst., pp. 276–283. IEEE, Singapore (2012). https://doi.org/10.1109/ICPADS.2012.46

    Google Scholar 

  88. Yuan, H., Fu, H., Liu, J., Hou, J., Kwong, S.: Non-cooperative game theory based rate adaptation for dynamic video streaming over HTTP. IEEE Trans. Mobile Comput. (2018). https://doi.org/10.1109/TMC.2018.2800749

    Google Scholar 

  89. Yuan, H., Wei, X., Yang, X., Xiao, J., Kwong, S.: Cooperative bargaining game-based multiuser bandwidth allocation for dynamic adaptive streaming over HTTP. IEEE Trans. Multimed. 20(1), 183–197 (2018)

    Article  Google Scholar 

  90. Zhang, D., Liu, D.: An adaptive cross-layer optimization scheme for light compressed High-definition video transmission based on 60 GHz system. In: IEEE Int. Conf. Commun. Technol., pp. 671–675. IEEE, Guilin, China (2013). https://doi.org/10.1109/ICCT.2013.6820459

    Google Scholar 

  91. Zhang, H., Ma, Z.: Fast intra mode decision for high efficiency video coding (HEVC). IEEE Trans. Circuits Syst. Video Technol. 24(4), 660–668 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Fleury.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adeyemi-Ejeye, A.O., Alreshoodi, M., Al-Jobouri, L. et al. Prospects for live higher resolution video streaming to mobile devices: achievable quality across wireless links. J Real-Time Image Proc 16, 127–141 (2019). https://doi.org/10.1007/s11554-018-0807-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-018-0807-7

Keywords

Navigation