Skip to main content

Advertisement

Log in

Intranasal insulin administration may be highly effective in improving cognitive function in mice with cognitive dysfunction by reversing brain insulin resistance

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

It is well known in clinical practice that Alzheimer’s disease (AD) is closely associated with brain insulin resistance, and the cerebral insulin pathway has been proven to play a critical role in the pathogenesis of AD. However, finding the most efficient way to improve brain insulin resistance remains challenging. Peripheral administration of insulin does not have the desired therapeutic effect and may induce adverse reactions, such as hyperinsulinemia, but intranasal administration may be an efficient way. In the present study, we established a brain insulin resistance model through an intraventricular injection of streptozotocin, accompanied by cognitive impairment. Following intranasal insulin treatment, the learning and memory functions of mice were significantly restored, the neurogenesis in the hippocampus was improved, the level of insulin in the brain increased, and the activation of the IRS-1-PI3K-Akt-GSK3β insulin signal pathway, but not the Ras-Raf-MEK-MAPK pathway, was markedly increased. The olfactory bulb–subventricular zone–subgranular zone (OB-SVZ-SGZ) axis might be the mechanism through which intranasal insulin regulates cognition in brain-insulin-resistant mice. Thus, intranasal insulin administration may be a highly efficient way to improve cognitive function by increasing cerebral insulin levels and reversing insulin resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

STZ:

Streptozotocin

AD:

Alzheimer’s disease

Aβ:

Amyloid beta

IRS-1:

Insulin receptor substrate-1

PI3K:

PI-3 kinase

GSK3:

Glycogen synthase kinase-3β

IDE:

Insulin-degrading enzyme

IN:

Intranasal administration

IP:

Intraperitoneal administration

Ins:

Insulin

NS:

Normal saline

I.C.V.:

Intracerebroventricular

IRBS:

Insulin-resistant brain state

IHC:

Immunohistochemistry

IF:

Immunofluorescence

DCX:

Doublecortin

BrdU:

5-Bromo-2-deoxyuridine

GLUT2:

Glucose transporter 2

SVZ:

Subependymal ventricular zone

SGZ:

Subgranular zone

OB:

Olfactory bulb

RMS:

Rostral migratory stream

References

  • Ahmed S, Mahmood Z, Zahid S (2015) Linking insulin with Alzheimer’s disease: emergence as type III diabetes. Neurol Sci 36(10):1763–1769

    Article  PubMed  Google Scholar 

  • Apostolatos A, Song S, Acosta S, Peart M, Watson JE, Bickford P et al (2012) Insulin promotes neuronal survival via the alternatively spliced protein kinase CdeltaII isoform. J Biol Chem 287(12):9299–9310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banks WA (2012) Brain meets body: the blood–brain barrier as an endocrine interface. Endocrinology 153(9):4111–4119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becker K, Freude S, Zemva J, Stohr O, Krone W, Schubert M (2012) Chronic peripheral hyperinsulinemia has no substantial influence on tau phosphorylation in vivo. Neurosci Lett 516(2):306–310

    Article  CAS  PubMed  Google Scholar 

  • Belfiore A, Frasca F, Pandini G, Sciacca L, Vigneri R (2009) Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease. Endocr Rev 30(6):586–623

    Article  CAS  PubMed  Google Scholar 

  • Blazquez E, Velazquez E, Hurtado-Carneiro V, Ruiz-Albusac JM (2014) Insulin in the brain: its pathophysiological implications for states related with central insulin resistance, type 2 diabetes and Alzheimer’s disease. Front Endocrinol 5:161

    Article  Google Scholar 

  • Bomfim TR, Forny-Germano L, Sathler LB, Brito-Moreira J, Houzel JC, Decker H et al (2012) An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer’s disease-associated Abeta oligomers. J Clin Investig 122(4):1339–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruel-Jungerman E, Veyrac A, Dufour F, Horwood J, Laroche S, Davis S (2009) Inhibition of PI3K-Akt signaling blocks exercise-mediated enhancement of adult neurogenesis and synaptic plasticity in the dentate gyrus. PLoS ONE 4(11):e7901

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen Y, Liang Z, Blanchard J, Dai CL, Sun S, Lee MH et al (2013) A non-transgenic mouse model (icv-STZ mouse) of Alzheimer’s disease: similarities to and differences from the transgenic model (3xTg-AD mouse). Mol Neurobiol 47(2):711–725

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Deng Y, Zhang B, Gong CX (2014) Deregulation of brain insulin signaling in Alzheimer’s disease. Neurosci Bull 30(2):282–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng PW, Chen YY, Cheng WH, Lu PJ, Chen HH, Chen BR et al (2015) Wnt signaling regulates blood pressure by downregulating a GSK-3beta-mediated pathway to enhance insulin signaling in the central nervous system. Diabetes 64(10):3413–3424

    Article  CAS  PubMed  Google Scholar 

  • Chiu SL, Chen CM, Cline HT (2008) Insulin receptor signaling regulates synapse number, dendritic plasticity, and circuit function in vivo. Neuron 58(5):708–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Claxton A, Baker LD, Hanson A, Trittschuh EH, Cholerton B, Morgan A et al (2015) Long-acting intranasal insulin detemir improves cognition for adults with mild cognitive impairment or early-stage Alzheimer’s disease dementia. J Alzheimer’s Dis JAD 44(3):897–906

    Article  CAS  Google Scholar 

  • Cohen AC, Tong M, Wands JR, de la Monte SM (2007) Insulin and insulin-like growth factor resistance with neurodegeneration in an adult chronic ethanol exposure model. Alcohol Clin Exp Res 31(9):1558–1573

    Article  CAS  PubMed  Google Scholar 

  • Correia SC, Santos RX, Perry G, Zhu X, Moreira PI, Smith MA (2011) Insulin-resistant brain state: the culprit in sporadic Alzheimer’s disease? Ageing Res Rev 10(2):264–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Craft S, Newcomer J, Kanne S, Dagogo-Jack S, Cryer P, Sheline Y et al (1996) Memory improvement following induced hyperinsulinemia in Alzheimer’s disease. Neurobiol Aging 17(1):123–130

    Article  CAS  PubMed  Google Scholar 

  • Craft S, Baker LD, Montine TJ, Minoshima S, Watson GS, Claxton A et al (2012) Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: a pilot clinical trial. Arch Neurol 69(1):29–38

    Article  PubMed  Google Scholar 

  • Curtis MA, Faull RL, Eriksson PS (2007) The effect of neurodegenerative diseases on the subventricular zone. Nat Rev Neurosci 8(9):712–723

    Article  CAS  PubMed  Google Scholar 

  • Dineley KT, Jahrling JB, Denner L (2014) Insulin resistance in Alzheimer’s disease. Neurobiol Dis 72(Pt A):92–103

    Article  CAS  PubMed  Google Scholar 

  • Dore S, Kar S, Rowe W, Quirion R (1997) Distribution and levels of [125I]IGF-I, [125I]IGF-II and [125I]insulin receptor binding sites in the hippocampus of aged memory-unimpaired and -impaired rats. Neuroscience 80(4):1033–1040

    Article  CAS  PubMed  Google Scholar 

  • D’Oria R, Laviola L, Giorgino F, Unfer V, Bettocchi S, Scioscia M (2017) PKB/Akt and MAPK/ERK phosphorylation is highly induced by inositols: novel potential insights in endothelial dysfunction in preeclampsia. Pregnancy Hypertens 10:107–112

    Article  PubMed  Google Scholar 

  • Duelli R, Schrock H, Kuschinsky W, Hoyer S (1994) Intracerebroventricular injection of streptozotocin induces discrete local changes in cerebral glucose utilization in rats. Int J Dev Neurosci 12(8):737–743

    Article  CAS  PubMed  Google Scholar 

  • Franklin KB, Paxinos G (2008) The mouse brain in stereotaxic coordinates. Academic Press, New York

    Google Scholar 

  • Frisardi V, Solfrizzi V, Capurso C, Imbimbo BP, Vendemiale G, Seripa D et al (2010) Is insulin resistant brain state a central feature of the metabolic-cognitive syndrome? J Alzheimer’s Dis JAD 21(1):57–63

    Article  CAS  Google Scholar 

  • Gray SM, Meijer RI, Barrett EJ (2014) Insulin regulates brain function, but how does it get there? Diabetes 63(12):3992–3997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grieb P (2016) Intracerebroventricular streptozotocin injections as a model of Alzheimer’s disease: in search of a relevant mechanism. Mol Neurobiol 53(3):1741–1752

    Article  CAS  PubMed  Google Scholar 

  • Grunblatt E, Salkovic-Petrisic M, Osmanovic J, Riederer P, Hoyer S (2007) Brain insulin system dysfunction in streptozotocin intracerebroventricularly treated rats generates hyperphosphorylated tau protein. J Neurochem 101(3):757–770

    Article  PubMed  CAS  Google Scholar 

  • Guo D, Gan J, Tan T, Tian X, Wang G, Ng KT (2018) Neonatal exposure of ketamine inhibited the induction of hippocampal long-term potentiation without impairing the spatial memory of adult rats. Cogn Neurodyn 12(4):377–383

    Article  PubMed  PubMed Central  Google Scholar 

  • Hong HJ, Kang W, Kim DG, Lee DH, Lee Y, Han CH (2014) Effects of resveratrol on the insulin signaling pathway of obese mice. J Vet Sci 15(2):179–185

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoyer S, Lee SK, Loffler T, Schliebs R (2000) Inhibition of the neuronal insulin receptor. An in vivo model for sporadic Alzheimer disease? Ann N Y Acad Sci 920:256–258

    Article  CAS  PubMed  Google Scholar 

  • Kamat PK (2015) Streptozotocin induced Alzheimer’s disease like changes and the underlying neural degeneration and regeneration mechanism. Neural Regener Res 10(7):1050–1052

    Article  CAS  Google Scholar 

  • Kumar M, Kaur D, Bansal N (2017) Caffeic acid phenethyl ester (CAPE) prevents development of STZ-ICV induced dementia in rats. Pharmacogn Mag 13(Suppl 1):S10–S15

    PubMed  PubMed Central  Google Scholar 

  • Lenzen S (2008) The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia 51(2):216–226

    Article  CAS  PubMed  Google Scholar 

  • Luchsinger JA, Tang MX, Shea S, Mayeux R (2004) Hyperinsulinemia and risk of Alzheimer disease. Neurology 63(7):1187–1192

    Article  PubMed  Google Scholar 

  • Morales-Corraliza J, Wong H, Mazzella MJ, Che S, Lee SH, Petkova E et al (2016) Brain-wide insulin resistance, tau phosphorylation changes, and hippocampal neprilysin and amyloid-beta alterations in a monkey model of type 1 diabetes. J Neurosci 36(15):4248–4258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naik B, Nirwane A, Majumdar A (2017) Pterostilbene ameliorates intracerebroventricular streptozotocin induced memory decline in rats. Cogn Neurodyn 11(1):35–49

    Article  PubMed  Google Scholar 

  • Nakamura N, Ohyagi Y, Imamura T, Yanagihara YT, Iinuma KM, Soejima N et al (2017) Apomorphine therapy for neuronal insulin resistance in a mouse model of Alzheimer’s disease. J Alzheimer’s Dis JAD 58(4):1151–1161

    Article  CAS  Google Scholar 

  • Newsholme P, Cruzat V, Arfuso F, Keane K (2014) Nutrient regulation of insulin secretion and action. J Endocrinol 221(3):R105–R120

    Article  CAS  PubMed  Google Scholar 

  • Park SJ, Kim YH, Nam GH, Choe SH, Lee SR, Kim SU et al (2015) Quantitative expression analysis of APP pathway and tau phosphorylation-related genes in the ICV STZ-induced non-human primate model of sporadic Alzheimer’s disease. Int J Mol Sci 16(2):2386–2402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu WQ, Folstein MF (2006) Insulin, insulin-degrading enzyme and amyloid-beta peptide in Alzheimer’s disease: review and hypothesis. Neurobiol Aging 27(2):190–198

    Article  CAS  PubMed  Google Scholar 

  • Rajasekar N, Nath C, Hanif K, Shukla R (2017) Intranasal insulin administration ameliorates streptozotocin (ICV)-induced insulin receptor dysfunction, neuroinflammation, amyloidogenesis, and memory impairment in rats. Mol Neurobiol 54(8):6507–6522

    Article  CAS  PubMed  Google Scholar 

  • Ramos-Rodriguez JJ, Sanchez-Sotano D, Doblas-Marquez A, Infante-Garcia C, Lubian-Lopez S, Garcia-Alloza M (2017) Intranasal insulin reverts central pathology and cognitive impairment in diabetic mother offspring. Mol Neurodegener 12(1):57

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ritt DA, Abreu-Blanco MT, Bindu L, Durrant DE, Zhou M, Specht SI et al (2016) Inhibition of Ras/Raf/MEK/ERK pathway signaling by a stress-induced phospho-regulatory circuit. Mol Cell 64(5):875–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salkovic-Petrisic M, Osmanovic J, Grunblatt E, Riederer P, Hoyer S (2009) Modeling sporadic Alzheimer’s disease: the insulin resistant brain state generates multiple long-term morphobiological abnormalities including hyperphosphorylated tau protein and amyloid-beta. J Alzheimer’s Dis JAD 18(4):729–750

    Article  CAS  Google Scholar 

  • Sasaoka T, Wada T, Tsuneki H (2014) Insulin resistance and cognitive function. Nihon rinsho Jpn J Clin Med 72(4):633–640

    Google Scholar 

  • Shanik MH, Xu Y, Skrha J, Dankner R, Zick Y, Roth J (2008) Insulin resistance and hyperinsulinemia: is hyperinsulinemia the cart or the horse? Diabetes Care 31(Suppl 2):S262–S268

    Article  CAS  PubMed  Google Scholar 

  • Talbot K, Wang HY (2014) The nature, significance, and glucagon-like peptide-1 analog treatment of brain insulin resistance in Alzheimer’s disease. Alzheimer’s Dement J Alzheimer’s Assoc 10(1 Suppl):S12–S25

    Article  Google Scholar 

  • Talbot K, Wang HY, Kazi H, Han LY, Bakshi KP, Stucky A et al (2012) Demonstrated brain insulin resistance in Alzheimer’s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J Clin Investig 122(4):1316–1338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka T, Tsujio I, Nishikawa T, Shinosaki K, Kudo T, Takeda M (2000) Significance of tau phosphorylation and protein kinase regulation in the pathogenesis of Alzheimer disease. Alzheimer Dis Assoc Disord 14(Suppl 1):S18–S24

    Article  CAS  PubMed  Google Scholar 

  • Unger JW, Betz M (1998) Insulin receptors and signal transduction proteins in the hypothalamo-hypophyseal system: a review on morphological findings and functional implications. Histol Histopathol 13(4):1215–1224

    CAS  PubMed  Google Scholar 

  • van der Heide LP, Ramakers GM, Smidt MP (2006) Insulin signaling in the central nervous system: learning to survive. Prog Neurobiol 79(4):205–221

    Article  PubMed  CAS  Google Scholar 

  • Verdile G, Keane KN, Cruzat VF, Medic S, Sabale M, Rowles J et al (2015) Inflammation and oxidative stress: the molecular connectivity between insulin resistance, obesity, and Alzheimer’s disease. Mediat Inflamm 2015:105828

    Article  CAS  Google Scholar 

  • Wang D, Wang C, Liu L, Li S (2018) Protective effects of evodiamine in experimental paradigm of Alzheimer’s disease. Cogn Neurodyn 12(3):303–313

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilkins HM, Harris JL, Carl SM, Lezi E, Lu J, Eva Selfridge J et al (2014) Oxaloacetate activates brain mitochondrial biogenesis, enhances the insulin pathway, reduces inflammation and stimulates neurogenesis. Hum Mol Genet 23(24):6528–6541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu YY, Wang X, Tan L, Liu D, Liu XH, Wang Q et al (2013) Lithium attenuates scopolamine-induced memory deficits with inhibition of GSK-3beta and preservation of postsynaptic components. J Alzheimer’s Dis JAD 37(3):515–527

    Article  CAS  Google Scholar 

  • Yang Y, Ma D, Wang Y, Jiang T, Hu S, Zhang M et al (2013) Intranasal insulin ameliorates tau hyperphosphorylation in a rat model of type 2 diabetes. J Alzheimer’s Dis JAD 33(2):329–338

    Article  CAS  Google Scholar 

  • Zang J, Liu Y, Li W, Xiao D, Zhang Y, Luo Y et al (2017) Voluntary exercise increases adult hippocampal neurogenesis by increasing GSK-3beta activity in mice. Neuroscience 23(354):122–135

    Article  CAS  Google Scholar 

  • Zhao C, Deng W, Gage FH (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132(4):645–660

    Article  CAS  PubMed  Google Scholar 

  • Zhao W, Wu X, Xie H, Ke Y, Yung WH (2010) Permissive role of insulin in the expression of long-term potentiation in the hippocampus of immature rats. Neuro-Signals 18(4):236–245

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 81860244); Guangxi Natural Science Foundation (Grant No. 2018GXNSFAA281051); the Basic Ability Enhancement Program for Young and Middle-age Teachers of Guangxi (Grant No. 2017KY0516).

Author information

Authors and Affiliations

Authors

Contributions

CDJ designed experiments. HL, LJT, CSG, YMJ, CG and YFM performed experiments. CSG, QTL and XLM contributed to the statistical analyses and interpretation. HL drafted the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Chongdong Jian.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, H., Tang, L., Guo, C. et al. Intranasal insulin administration may be highly effective in improving cognitive function in mice with cognitive dysfunction by reversing brain insulin resistance. Cogn Neurodyn 14, 323–338 (2020). https://doi.org/10.1007/s11571-020-09571-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-020-09571-z

Keywords

Navigation