Skip to main content
Log in

Increased salinity stress tolerance of Nicotiana tabacum L. in vitro plants with the addition of xyloglucan oligosaccharides to the culture medium

  • Plant Physiology
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Xyloglucan oligosaccharides (XGOs), derived from the hydrolysis of plant cell wall xyloglucan, are a novel class of biostimulants that exert positive effects on plant growth and morphology and can enhance plant stress tolerance. The aim of this study was to determine the influence of the application of exogenous Tamarindus indica L. cell wall-derived XGOs on Nicotiana tabacum L. tolerance to salt stress by evaluating morphology, physiological, and metabolic changes. N. tabacum plants were grown in agar-gelled media for 2 mo under salt stress with 100 mM of sodium chloride (NaCl) ± 0.1 μM XGOs. The germination percentage (GP), number of leaves (NL), foliar area (FA), primary root length (PRL), and density of lateral roots (DLR) were measured. In addition, unaffected 21-d-old N. tabacum plants were treated with a salt shock (100 mM NaCl) ± 0.1 μM XGOs. Proline, total chlorophyll, and total carbonyl levels, in addition to lipid peroxidation degree and activities of four enzymes related to oxidative stress, were quantified. The results indicated that XGOs significantly improved N. tabacum plants development after exposure to salt stress. XGOs caused a significant increase in NL and PRL, promoted lateral root formation, and produced an increase in proline and total chlorophyll contents, while reducing protein oxidation and lipid peroxidation. Although the XGOs modulated the activity of the enzymes analyzed, they were not statistically different from the salt control. It was concluded that XGOs may act as metabolic inducers that trigger the physiological responses that counteract the negative effects of oxidative stress under saline conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abrol IP, Yadav JSP, Massoud FI (1988) Salt-affected soils and their management. vol n.° 39. Food and Agriculture Organization of the United Nations

  • Acosta A (2006) Estudio del efecto de dos oligosacarinas sintéticas sobre el cultivo del tabaco (Nicotiana tabacum L.). Máster en Ciencias en Biología Vegetal, Universidad de la Habana

  • Aebi H (1984) Catalase in vitro. In: methods in enzymology, vol volume 105. Academic press, pp 121-126

  • Bewley JD (1997) Seed germination and dormancy. Plant Cell 9:1055–1066

    Article  CAS  Google Scholar 

  • Cabrera JC et al (2012) Practical use of oligosaccharins in agriculture. Acta Hort 1009:195–212

    Google Scholar 

  • Carillo P, Gibon Y (2011) PROTOCOL: extraction and determination of proline. PrometheusWiki. Accessed 2017-07-10 20:08:33 UTC 2017

  • Carlberg I, Mannervik B (1985) Glutathione reductase. Meth Enzymol 113:484–490

    Article  CAS  Google Scholar 

  • Chen S et al (2016) Effects of uneven vertical distribution of soil salinity under a buried straw layer on the growth, fruit yield, and fruit quality of tomato plants. Sci Hort 203:131–142

    Article  Google Scholar 

  • Conover WJ (1999) Practical nonparametric statistics. Wiley series in probability and statistics, Third edn. Wiley, New York

    Google Scholar 

  • Cutillas-Iturralde A, Peña MJ, Zarra I, Lorences EP (1998) A xyloglucan from persimmon fruit cell walls. Phytochem 48:607–610

    Article  CAS  Google Scholar 

  • de Azevedo Neto AD, Prisco JT, Enéas-Filho J, Abreu CEB, Gomes-Filho E (2006) Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environ Exp Bot 56:87–94

    Article  Google Scholar 

  • Di Rienzo J, Casanoves F, Balzarini M, Gonzalez L, Tablada M, Robledo C (2011) InfoStat versión 2015. Universidad Nacional de Córdoba, Argentina, FCA

    Google Scholar 

  • du Jardin P (2015) Plant biostimulants: definition, concept, main categories and regulation. Sci Hort 196:3–14

    Article  Google Scholar 

  • Dubrovsky JG, Gambetta GA, Hernandez-Barrera A, Shishkova S, Gonzalez I (2006) Lateral root initiation in Arabidopsis: developmental window, spatial patterning, density and predictability. Ann Bot 97:903–915

    Article  CAS  Google Scholar 

  • Fry SC (1994) Oligosaccharins as plant growth regulators. Biochem Soc Symp 60:5–14

    CAS  PubMed  Google Scholar 

  • Fry SC, Aldington S, Hetherington PR, Aitken J (1993a) Oligosaccharides as signals and substrates in the plant cell wall. Plant Physiol 103:1–5

    Article  CAS  Google Scholar 

  • Fry SC et al (1993b) An unambiguous nomenclature for xyloglucan-derived oligosaccharides. Physiol Plant 89:1–3

    Article  CAS  Google Scholar 

  • Garcı́a-Limones C, Hervás A, Navas-Cortés JA, Jiménez-Daı́z RM, Tena M (2002) Induction of an antioxidant enzyme system and other oxidative stress markers associated with compatible and incompatible interactions between chickpea (Cicer arietinum L.) and Fusarium oxysporum f. sp.ciceris. Physiol Mol Plant Path 61:325–337

    Article  Google Scholar 

  • González-Pérez L et al (2012) Oligosaccharins and Pectimorf® stimulate root elongation and shorten the cell cycle in higher plants. Plant Growth Regul 68:211–221

    Article  Google Scholar 

  • Gonzalez-Perez L et al (2014) In tobacco BY-2 cells xyloglucan oligosaccharides alter the expression of genes involved in cell wall metabolism, signalling, stress responses, cell division and transcriptional control. Mol Biol Rep 41:6803–6816

    Article  CAS  Google Scholar 

  • González-Pérez L et al (2018) Application of exogenous xyloglucan oligosaccharides affects molecular responses to salt stress in Arabidopsis thaliana seedlings. J Soil Sci Plant Nut 18:1187–1205

    Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7:1456–1466

    Article  CAS  Google Scholar 

  • Huang Z, Zhao L, Chen D, Liang M, Liu Z, Shao H, Long X (2013) Salt stress encourages proline accumulation by regulating proline biosynthesis and degradation in Jerusalem artichoke plantlets. PLoS One 8:e62085

    Article  CAS  Google Scholar 

  • Jolliffe I (2002) Principal component analysis. Springer series in statistics, 2nd edn. Springer-Verlag, New York

  • Kakkar P, Das B, Viswanathan PN (1984) A modified spectrophotometric assay of superoxide dismutase. Indian J Biochem Biophys 21:130–132

    CAS  PubMed  Google Scholar 

  • Larskaya IA, Gorshkova TA (2015) Plant oligosaccharides - outsiders among elicitors? Biochem Mosc 80:881–900

    Article  CAS  Google Scholar 

  • Levine RL et al (1990) Determination of carbonyl content in oxidatively modified proteins. In: Meth Enzymol, vol 186. Academic press, pp 464–478

  • Lucini L, Rouphael Y, Cardarelli M, Canaguier R, Kumar P, Colla G (2015) The effect of a plant-derived biostimulant on metabolic profiling and crop performance of lettuce grown under saline conditions. Sci Hort 182:124–133

    Article  CAS  Google Scholar 

  • Misaki A, Sekiya K, Yamatoya K (1997) Agent for inducing phytoalexin and method for inducing phytoalexin. United Stated Patent No. USO05602111A.

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  Google Scholar 

  • O'Neill RA, Albersheim P, Darvill AG (1989) Purification and characterization of a xyloglucan oligosaccharide-specific xylosidase from pea seedlings. J Biol Chem 264:20430–20437

    CAS  PubMed  Google Scholar 

  • Park YB, Cosgrove DJ (2015) Xyloglucan and its interactions with other components of the growing cell wall. Plant Cell Physiol 56:180–194

    Article  CAS  Google Scholar 

  • Pilz J, Meineke I, Gleiter CH (2000) Measurement of free and bound malondialdehyde in plasma by high-performance liquid chromatography as the 2,4-dinitrophenylhydrazine derivative. Journal of Chromatography B: Biomed Sci App 742:315–325

    Article  CAS  Google Scholar 

  • Porra RJ (2002) The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynth Res 73:149–156

    Article  CAS  Google Scholar 

  • Roy SJ, Negrao S, Tester M (2014) Salt resistant crop plants. Curr Opin Biotechnol 26:115–124

    Article  CAS  Google Scholar 

  • Santos CV (2004) Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Sci Hort 103:93–99

    Article  CAS  Google Scholar 

  • Schluter D, Whitlock M (2015) The analysis of biological data. Second edn, Macmillan Learning

    Google Scholar 

  • Stratistics M (2017) Biostimulants - Global Market Outlook (2017–2023). Stratistics MRC, USA

    Google Scholar 

  • Vahdati K, Lotfi N (2013) Abiotic stress tolerance in plants with emphasizing on drought and salinity stresses in walnut. In: Vahdati K, Leslie C (eds) Abiotic stress - plant responses and applications in agriculture. InTech, Rijeka p Ch. 10

    Chapter  Google Scholar 

  • Vargas-Rechia C, Reicher F, Rita Sierakowski M, Heyraud A, Driguez H, Linart Y (1998) Xyloglucan octasaccharide XXLGol derived from the seeds of hymenaea courbaril acts as a signaling molecule. Plant Physiol 116:1013–1021

    Article  CAS  Google Scholar 

  • Wang Y, Li K, Li X (2009) Auxin redistribution modulates plastic development of root system architecture under salt stress in Arabidopsis thaliana. J Plant Physiol 166:1637–1645

    Article  CAS  Google Scholar 

  • Yang C, Liu J, Dong X, Cai Z, Tian W, Wang X (2014) Short-term and continuing stresses differentially interplay with multiple hormones to regulate plant survival and growth. Mol Plant 7:841–855

    Article  CAS  Google Scholar 

  • Zhang X, Li K, Liu S, Zou P, Xing R, Yu H, Chen X, Qin Y, Li P (2017) Relationship between the degree of polymerization of chitooligomers and their activity affecting the growth of wheat seedlings under salt stress. J Agric Food Chem 65:501–509

    Article  CAS  Google Scholar 

  • Zhang X, Schmidt R (1999) Biostimulating turfgrasses. Grounds Maintenance 34:14–15

    Google Scholar 

  • Zou P, Li K, Liu S, He X, Zhang X, Xing R, Li P (2016) Effect of sulfated Chitooligosaccharides on wheat seedlings (Triticum aestivum L.) under salt stress. J Agric Food Chem 64:2815–2821

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by Universidad de Las Américas (UDLA), Quito, Ecuador.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lien González-Pérez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest. All authors have read and approved the submitted manuscript.

Additional information

Editor: Bin Tian

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Páez-Watson, T., Álvarez-Suárez, J.M., Rivas-Romero, F. et al. Increased salinity stress tolerance of Nicotiana tabacum L. in vitro plants with the addition of xyloglucan oligosaccharides to the culture medium. In Vitro Cell.Dev.Biol.-Plant 56, 325–334 (2020). https://doi.org/10.1007/s11627-019-10048-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-019-10048-w

Keywords

Navigation