Skip to main content
Log in

A Comprehensive Review for Micro/Nanoscale Thermal Mapping Technology Based on Scanning Thermal Microscopy

  • Nano/Microscale Heat Conduction
  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

Thermal characterization becomes challenging as the material size is reduced to micro/nanoscales. Based on scanning probe microscopy (SPM), scanning thermal microscopy (SThM) is able to collect thermophysical characteristics of the microscopic domain with high spatial resolution. Starting from its development history, this review introduces the operation mechanism of the instrument in detail, including working principles, thermal probes, quantitative study, and applications. As the core principle of SThM, the heat transfer mechanism section is discussed emphatically. Additionally, the emerging technologies based on the SThM platform are clearly reviewed and corresponding examples are presented in detail. Finally, the current challenges and future opportunities of SThM are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yue Y.N., Wang X.W., Nanoscale thermal probing. Nano Reviews, 2012, 3(1): 11586.

    Article  Google Scholar 

  2. Cahill D.G., Goodson K., Majumdar A., Thermometry and thermal transport in micro/nanoscale solid-state devices and structures. Journal of Heat Transfer, 2002, 124(2): 223–241.

    Article  Google Scholar 

  3. Chen G., Phonon heat conduction in nanostructures. International Journal of Thermal Sciences, 2000, 39(4): 471–480.

    Article  Google Scholar 

  4. Holman J., Heat transfer tenth edition. The McGraw-Hill Companies, 2010.

    Google Scholar 

  5. Siemens M.E., Li Q., Yang R., Nelson K.A., Anderson E.H., Murnane M.M., Kapteyn H.C., Quasi-ballistic thermal transport from nanoscale interfaces observed using ultrafast coherent soft X-ray beams. Nature Materials, 2010, 9(1): 26–30.

    Article  ADS  Google Scholar 

  6. Wang J., Wang J.S., Carbon nanotube thermal transport: ballistic to diffusive. Applied Physics Letters, 2006, 88(11): 111909.

    Article  ADS  Google Scholar 

  7. Northrop G., Wolfe J.P., Ballistic phonon imaging in germanium. Physical Review B, 1980, 22(12): 6196.

    Article  ADS  Google Scholar 

  8. Northrop G., Wolfe J.P., Ballistic phonon imaging in solids—a new look at phonon focusing. Physical Review Letters, 1979, 43(19): 1424.

    Article  ADS  Google Scholar 

  9. Chen G., Ballistic-diffusive heat-conduction equations. Physical Review Letters, 2001, 86(11): 2297.

    Article  ADS  Google Scholar 

  10. Chen G., Ballistic-diffusive equations for transient heat conduction from nano to macroscales. Journal of Heat Transfer, 2002, 124(2): 320–328.

    Article  Google Scholar 

  11. Anderson C.V., Tamma K.K., Novel heat conduction model for bridging different space and time scales. Physical Review Letters, 2006, 96(18): 184301.

    Article  ADS  Google Scholar 

  12. Hoogeboom-Pot K.M., Hernandez-Charpak J.N., Gu X., Frazer T.D., Anderson E.H., Chao W., Falcone R.W., Yang R., Murnane M.M., Kapteyn H.C., A new regime of nanoscale thermal transport: Collective diffusion increases dissipation efficiency. Proceedings of the National Academy of Sciences, 2015, 112(16): 4846–4851.

    Article  ADS  Google Scholar 

  13. Qiu L., Zhu N., Zou, H., Feng Y., Zhang X., Tang, D.W., Advances in thermal transport properties at nanoscale in China. International Journal of Heat and Mass Transfer, 2018, 125(2018): 413–433.

    Article  Google Scholar 

  14. Guo Y., Jou D., Wang M., Nonequilibrium thermodynamics of phonon hydrodynamic model for nanoscale heat transport. Physical Review B, 2018, 98(10): 104304.

    Article  ADS  Google Scholar 

  15. Guo Y., Wang M., Phonon hydrodynamics for nanoscale heat transport at ordinary temperatures. Physical Review B, 2018, 97(3): 035421.

    Article  ADS  Google Scholar 

  16. Christofferson J., Maize K., Ezzahri Y., Shabani J., Wang X., Shakouri A., Microscale and nanoscale thermal characterization techniques. Journal of Electronic Packaging, 2008, 130(4): 041101.

    Article  Google Scholar 

  17. Kuball M., Rajasingam S., Sarua A., Uren M., Martin T., Hughes B., Hilton K., Balmer R.S., Measurement of temperature distribution in multifinger AlGaN/GaN heterostructure field-effect transistors using micro-Raman spectroscopy. Applied Physics Letters, 2003, 82(1): 124–126.

    Article  ADS  Google Scholar 

  18. Gu J., She J., Yue Y., Micro/nanoscale thermal characterization based on spectroscopy techniques. ES Energy & Environment, 2020, 9(2): 15–27.

    Google Scholar 

  19. Li Q.Y., Hao Q., Zhu T., Zebarjadi M., Nanostructured and heterostructured 2D materials for thermoelectrics. Engineered Science, 2021, 13: 24–50.

    Google Scholar 

  20. Li Q.Y., Katakami K., Ikuta T., Kohno M., Zhang X., Takahashi K., Measurement of thermal contact resistance between individual carbon fibers using a laser-flash Raman mapping method. Carbon, 2019, 141: 92–98.

    Article  Google Scholar 

  21. Li Q.Y., Zhang X., Takahashi K., Variable-spot-size laser-flash Raman method to measure in-plane and interfacial thermal properties of 2D van der Waals heterostructures. International Journal of Heat and Mass Transfer, 2018, 125: 1230–1239.

    Article  Google Scholar 

  22. Li Q.Y., Xia K., Zhang J., Zhang Y., Li Q., Takahashi K., Zhang X., Measurement of specific heat and thermal conductivity of supported and suspended graphene by a comprehensive Raman optothermal method. Nanoscale, 2017, 9(30): 10784–10793.

    Article  Google Scholar 

  23. Brites C.D., Lima P.P., Silva N.J., Millán A., Amaral V. S., Palacio F., Carlos L., Thermometry at the nanoscale. Nanoscale, 2012, 4(16): 4799–4829.

    Article  ADS  Google Scholar 

  24. Yang J., Ziade E., Schmidt, A.J., Uncertainty analysis of thermoreflectance measurements. Review of Scientific Instruments, 2016, 87(1): 014901.

    Article  ADS  Google Scholar 

  25. Regner K.T., Sellan D.P., Su Z., Amon C.H., McGaughey A.J., Malen J.A., Broadband phonon mean free path contributions to thermal conductivity measured using frequency domain thermoreflectance. Nature Communications, 2013, 4(1): 1–7.

    Article  Google Scholar 

  26. Sandell S., Chávez-Ángel E., El Sachat A., He J., Sotomayor Torres C.M., Maire J., Thermoreflectance techniques and Raman thermometry for thermal property characterization of nanostructures. Journal of Applied Physics, 2020, 128(13): 131101.

    Article  ADS  Google Scholar 

  27. Oommen S.M., Pisana S., Role of the electron-phonon coupling in tuning the thermal boundary conductance at metal-dielectric interfaces by inserting ultrathin metal interlayers. Journal of Physics: Condensed Matter, 2020, 33(8): 085702.

    ADS  Google Scholar 

  28. Christofferson J., Shakouri A., Thermoreflectance based thermal microscope. Review of Scientific Instruments, 2005, 76(2): 024903.

    Article  ADS  Google Scholar 

  29. Brintlinger T., Qi Y., Baloch K.H., Goldhaber-Gordon D., Cumings J., Electron thermal microscopy. Nano Letter, 2008, 8(2): 582–585.

    Article  ADS  Google Scholar 

  30. Majumdar A., Scanning thermal microscopy. Annual Reviews, 1999, 29(1): 505–585.

    Google Scholar 

  31. Park K., Nair H., Crook A., Bank S., Yu E.T., Quantitative scanning thermal microscopy of ErAs/GaAs superlattice structures grown by molecular beam epitaxy. Applied Physics Letters, 2013, 102(6): 061912.

    Article  ADS  Google Scholar 

  32. Sadeghi M.M., Park S., Huang Y., Akinwande D., Yao Z., Murthy J., Shi L., Quantitative scanning thermal microscopy of graphene devices on flexible polyimide substrates. Journal of Applied Physics, 2016, 119(23): 235101.

    Article  ADS  Google Scholar 

  33. Mu L., Li Y.F., Mehra N., Ji T., Zhu J.H., Expedited phonon transfer in interfacially constrained polymer chain along self-organized amino acid crystals. ACS Applied Materials & Interfaces, 2017, 9(13): 12138–12145.

    Article  Google Scholar 

  34. Mu L., He J., Li Y.F., Ji T., Mehra N., Shi Y., Zhu J.H., Molecular origin of efficient phonon transfer in modulated polymer blends: Effect of hydrogen bonding on polymer coil size and assembled microstructure. The Journal of Physical Chemistry C, 2017, 121(26): 14204–14212.

    Article  Google Scholar 

  35. Mehra N., Jeske M., Yang X.T., Gu J.W., Kashfipour M.A., Li Y.F., Baughman J.A., Zhu J.H., Hydrogen-bond driven self-assembly of two-dimensional supramolecular melamine-cyanuric acid crystals and its self-alignment in polymer composites for enhanced thermal conduction. ACS Applied Polymer Materials, 2019, 1(6): 1291–1300.

    Article  Google Scholar 

  36. Binnig G., Rohrer H., Gerber C., Weibel E., Surface studies by scanning tunneling microscopy. Physical Review Letters, 1982, 49(1): 57–61.

    Article  ADS  Google Scholar 

  37. Binnig G., Rohrer H., Gerber C., Weibel E., Tunneling through a controllable vacuum gap. Applied Physics Letters, 1982, 40(2): 178–180.

    Article  ADS  Google Scholar 

  38. Williams C., Wickramasinghe H.K., Scanning thermal profiler. Microelectronic Engineering, 1986, 49(23): 1587–1589.

    Google Scholar 

  39. Binnig G., Quate C.F., Gerber C., Atomic force microscope. Physical Review Letters, 1986, 56(9): 930.

    Article  ADS  Google Scholar 

  40. Binnig G., Gerber C., Stoll E., Albrecht T., Quate C., Atomic resolution with atomic force microscope. Europhysics Letters, 1987, 3(12): 1281.

    Article  ADS  Google Scholar 

  41. Drake B., Prater C., Weisenhorn A., Gould S., Albrecht T., Quate C., Cannell D., Hansma H., Hansma P.K., Imaging crystals, polymers, and processes in water with the atomic force microscope. Science, 1989, 243(4898): 1586–1589.

    Article  ADS  Google Scholar 

  42. Nonnenmacher M., Wickramasinghe H.K., Scanning probe microscopy of thermal conductivity and subsurface properties. Applied Physics Letters, 1992, 61(2): 168–170.

    Article  ADS  Google Scholar 

  43. Majumdar A., Carrejo J., Lai J., Thermal imaging using the atomic force microscope. Applied Physics Letters, 1993, 62(20): 2501–2503.

    Article  ADS  Google Scholar 

  44. Gomès S., Assy A., Chapuis P.O., Scanning thermal microscopy: A review. Physica Status Solidi (a) Applications and Materials Science 2015, 212(3): 477–494.

    ADS  Google Scholar 

  45. Zhang Y., Zhu W., Hui F., Lanza M., Borca-Tasciuc T., Muñoz Rojo M., A review on principles and applications of scanning thermal microscopy (SThM). Advanced Functional Materials, 2020, 30(18): 1900892.

    Article  Google Scholar 

  46. Pylkki R.J., Moyer P.J., West P.E., Scanning near-field optical microscopy and scanning thermal microscopy. Japanese journal of applied physics, 1994, 33(6): 3785.

    Article  ADS  Google Scholar 

  47. Lopez L.D.P., Grauby S., Dilhaire S., Salhi M.A., Claeys W., Lefèvre S., Volz S., Characterization of the thermal behavior of PN thermoelectric couples by scanning thermal microscope. Microelectronics Journal, 2004, 35(10): 797–803.

    Article  Google Scholar 

  48. Hammiche A., Reading M., Pollock H., Song M., Hourston D.J., Localized thermal analysis using a miniaturized resistive probe. Review of Scientific Instruments, 1996, 67(12): 4268–4274.

    Article  ADS  Google Scholar 

  49. Dinwiddie R., Pylkki R., West P., Thermal conductivity contrast imaging with a scanning thermal microscope. Thermal Conductivity 22, Technomics, Lancaster PA, 1994, pp. 668–677.

    Google Scholar 

  50. Mills G., Weaver J., Harris G., Chen W., Carrejo J., Johnson L., Rogers B., Detection of subsurface voids using scanning thermal microscopy. Ultramicroscopy, 1999, 80(1): 7–11.

    Article  Google Scholar 

  51. Price D.M., Reading M., Hammiche A., Pollock H.M., Micro-thermal analysis: scanning thermal microscopy and localised thermal analysis. International Journal of Pharmaceutics, 1999, 192(1): 85–96.

    Article  Google Scholar 

  52. Mills G., Zhou H., Midha A., Donaldson L., Weaver J., Scanning thermal microscopy using batch fabricated thermocouple probes. Applied Physics Letters, 1998, 72(22): 2900–2902.

    Article  ADS  Google Scholar 

  53. Bodzenta J., Kazmierczak-Balata A., Lorenc M., Juszczyk J., Analysis of possibilities of application of nanofabricated thermal probes to quantitative thermal measurements. International Journal of Thermophysics, 2010, 31(1): 150–162.

    Article  ADS  Google Scholar 

  54. Chui B., Stowe T., Kenny T., Mamin H., Terris B., Rugar D., Low - stiffness silicon cantilevers for thermal writing and piezoresistive readback with the atomic force microscope. Applied Physics Letters, 1996, 69(18): 2767–2769.

    Article  ADS  Google Scholar 

  55. Despont M., Brugger J., Drechsler U., Dürig U., Häberle W., Lutwyche M., Rothuizen H., Stutz R., Widmer R., Binnig G.J.S., Physical A.A., VLSI-NEMS chip for parallel AFM data storage. Sensors and Actuators A: Physical, 2000, 80(2): 100–107.

    Article  Google Scholar 

  56. Albisetti E., Petti D., Pancaldi M., Madami M., Tacchi S., Curtis J., King W., Papp A., Csaba G., Porod W., Nanopatterning reconfigurable magnetic landscapes via thermally assisted scanning probe lithography. Nature Nanotechnology, 2016, 11(6): 545–551.

    Article  ADS  Google Scholar 

  57. Kazmierczak-Balata A., Bodzenta J., Krzywiecki M., Juszczyk J., Szmidt J., Firek P.J., Application of scanning microscopy to study correlation between thermal properties and morphology of BaTiO3 thin films. Thin Solid Films, 2013, 545: 217–221.

    Article  ADS  Google Scholar 

  58. Menges F., Riel H., Stemmer A., Gotsmann B., Quantitative thermometry of nanoscale hot spots. Nano Letters, 2012, 12(2): 596–601.

    Article  ADS  Google Scholar 

  59. Dai Z., Corbin E.A., King W.P., A microcantilever heater-thermometer with a thermal isolation layer for making thermal nanotopography measurements. Nanotechnology, 2009, 21(5): 055503.

    Article  ADS  Google Scholar 

  60. Janus P., Szmigiel D., Weisheit M., Wielgoszewski G., Ritz Y., Grabiec P., Hecker M., Gotszalk T., Sulecki P., Zschech E., Novel SThM nanoprobe for thermal properties investigation of micro-and nanoelectronic devices. Microelectronic Engineering, 2010, 87(5): 81370–81374.

    Google Scholar 

  61. Brown E., Hao L., Cox D., Gallop J., Scanning thermal microscopy probe capable of simultaneous electrical imaging and the addition of diamond tip. Journal of Physics: Conference Series. IOP Publishing, 2008, 100(5): 052012.

    Google Scholar 

  62. Janus P., Grabiec P., Sierakowski A., Gotszalk T., Rudek M., Kopiec D., Majstrzyk W., Boetsch G., Koehler B., Design, technology, and application of integrated piezoresistive scanning thermal microscopy (SThM) microcantilever. Scanning Microscopies, 2014, 9236: 154–164.

    Google Scholar 

  63. Grossel P., Raphaël O., Depasse F., Duvaut T., Trannoy N., Multifrequential AC modeling of the SThM probe behavior. International Journal of Thermal Sciences, 2007, 46(10): 980–988.

    Article  Google Scholar 

  64. Aubry R., Jacquet J.C., Weaver J., Durand O., Dobson P., Mills G., di Forte-Poisson M.A., Cassette S., Delage S., SThM temperature mapping and nonlinear thermal resistance evolution with bias on AlGaN/GaN HEMT devices. IEEE Transactions on Electron Devices, 2007, 54(3): 385–390.

    Article  ADS  Google Scholar 

  65. Hammiche A., Price D., Dupas E., Mills G., Kulik A., Reading M., Weaver J., Pollock H., Two new microscopical variants of thermomechanical modulation: scanning thermal expansion microscopy and dynamic localized thermomechanical analysis. Journal of Microscopy, 2000, 199(3): 180–190.

    Article  Google Scholar 

  66. Lefèvre S., Volz S., Chapuis P., Nanoscale heat transfer at contact between a hot tip and a substrate. International Journal of Heat and Mass Transfer, 2006, 49(1): 2251–2258.

    MATH  Google Scholar 

  67. King W.P., Bhatia B., Felts J.R., Kim H.J., Kwon B., Lee B., Somnath S., Rosenberger M.J., Heated atomic force microscope cantilevers and their applications. Annual Review of Heat Transfer, 2013, 12(1): 287–326.

    Article  Google Scholar 

  68. Nguyen T., Thiery L., Teyssieux D., Briand D., Vairac P., Recent improvements on micro-thermocouple based SThM. Journal of Physics: Conference Series, 2017, 785(1): 012005.

    Google Scholar 

  69. Wielgoszewski G., Sulecki P., Janus P., Grabiec P., Zschech E., Gotszalk T., A high-resolution measurement system for novel scanning thermal microscopy resistive nanoprobes. Measurement Science and Technology, 2011, 22(9): 094023.

    Article  ADS  Google Scholar 

  70. Nguyen T.P., Lemaire E., Euphrasie S., Thiery L., Teyssieux D., Briand D., Vairac P., Microfabricated high temperature sensing platform dedicated to scanning thermal microscopy (SThM). Sensors and Actuators A: Physical, 2018, 275: 109–118.

    Article  Google Scholar 

  71. Lefevre S., Saulnier J.B., Fuentes C., Volz S., Probe calibration of the scanning thermal microscope in the AC mode. Superlattices and Microstructures, 2004, 35(3): 6283–6288.

    Google Scholar 

  72. Borca-Tasciuc T., Scanning probe methods for thermal and thermoelectric property measurements. Annual Review of Heat Transfer, 2013, 16: 211–258.

    Article  Google Scholar 

  73. Zhang Y., Hapenciuc C.L., Castillo E.E., Borca-Tasciuc T., Mehta R.J., Karthik C., Ramanath G.J., A microprobe technique for simultaneously measuring thermal conductivity and Seebeck coefficient of thin films. Applied Physics Letters, 2010, 96(6): 062107.

    Article  ADS  Google Scholar 

  74. Lefèvre S., Volz S.J., 3ω-scanning thermal microscope. Review of Scientific Instruments, 2005, 76(3): 033701.

    Article  ADS  Google Scholar 

  75. Gomes S., Trannoy N., Grossel P., Depasse F., Bainier C., Charraut D., DC scanning thermal microscopy: characterization and interpretation of the measurement. International Journal of Thermal Sciences, 2001, 40(11): 949–958.

    Article  Google Scholar 

  76. Wielgoszewski G., Sulecki P., Gotszalk T., Janus P., Grabiec P., Hecker M., Ritz Y., Zschech E., Scanning thermal microscopy: A nanoprobe technique for studying the thermal properties of nanocomponents. Physica Status Solidi (b), 2011, 248(2): 370–374.

    Article  ADS  Google Scholar 

  77. Lee J., Gianchandani Y.B., A temperature-dithering closed-loop interface circuit for a scanning thermal microscopy system. Journal of Microelectromechanical Systems, 2005, 14(1): 44–53.

    Article  Google Scholar 

  78. Gomès S., Chapuis P. O., Nepveu F., Trannoy N., Volz S., Charlot B., Tessier G., Dilhaire S., Cretin B., Vairac P., Temperature study of sub-micrometric ICs by scanning thermal microscopy. IEEE Transactions on Components and Packaging Technologies, 2007, 30(3): 424–431.

    Article  Google Scholar 

  79. Wielgoszewski G., Sulecki P., Gotszalk T., Janus P., Szmigiel D., Grabiec P., Zschech E., Microfabricated resistive high-sensitivity nanoprobe for scanning thermal microscopy. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 2010, 28(6): C6N7–C6N11.

    Article  Google Scholar 

  80. Buzin A., Kamasa P., Pyda M., Wunderlich B., Application of a Wollaston wire probe for quantitative thermal analysis. Thermochimica Acta, 2002, 381(1): 9–18.

    Article  Google Scholar 

  81. Ezzahri Y., Lopez L.P., Chapuis O., Dilhaire S., Grauby S., Claeys W., Volz S., Dynamical behavior of the scanning thermal microscope (SThM) thermal resistive probe studied using Si/SiGe microcoolers. Superlattices and Microstructures, 2005, 38(1): 69–75.

    Article  ADS  Google Scholar 

  82. Hammiche A., Pollock H., Song M., Hourston D., Sub-surface imaging by scanning thermal microscopy. Measurement Science and Technology, 1996, 7(2): 142.

    Article  ADS  Google Scholar 

  83. Gorbunov V., Fuchigami N., Hazel J., Tsukruk V., Probing surface microthermal properties by scanning thermal microscopy. Langmuir, 1999, 15(24): 8340–8343.

    Article  Google Scholar 

  84. Florescu D., Asnin V., Pollak F.H., Jones A., Ramer J., Schurman M., Ferguson I., Thermal conductivity of fully and partially coalesced lateral epitaxial overgrown GaN/sapphire (0001) by scanning thermal microscopy. Applied Physics Letters, 2000, 77(10): 1464–1466.

    Article  ADS  Google Scholar 

  85. Pollock H., Hammiche A., Micro-thermal analysis: techniques and applications. Journal of Physics D: Applied Physics, 2001, 34(9): R23.

    Article  ADS  Google Scholar 

  86. Florescu D.I., Mourokh L., Pollak F.H., Look D.C., Cantwell G., Li X., High spatial resolution thermal conductivity of bulk ZnO (0001). Journal of Applied Physics, 2002, 91(2): 890–892.

    Article  ADS  Google Scholar 

  87. Volz S., Feng X., Fuentes C., Guérin P., Jaouen M., Thermal conductivity measurements of thin amorphous silicon films by scanning thermal microscopy. International Journal of Thermophysics, 2002, 23(6): 1645–1657.

    Article  Google Scholar 

  88. Gomes S., David L., Lysenko V., Descamps A., Nychyporuk T., Raynaud M., Application of scanning thermal microscopy for thermal conductivity measurements on meso-porous silicon thin films. Journal of Physics D: Applied Physics, 2007, 40(21): 6677.

    Article  ADS  Google Scholar 

  89. Li Y.F., Mehra N., Ji T., Zhu J.H., Realizing the nanoscale quantitative thermal mapping of scanning thermal microscopy by resilient tip-surface contact resistance models. Nanoscale Horiz, 2018, 3(5): 505–516.

    Article  ADS  Google Scholar 

  90. Altet J., Dilhaire S., Volz S., Rampnoux J.-M., Rubio A., Grauby S., Lopez L.D.P., Claeys W., Saulnier J.B., Four different approaches for the measurement of IC surface temperature: application to thermal testing. Microelectronics Journal, 2002, 33(9): 689–696.

    Article  Google Scholar 

  91. Altet J., Claeys W., Dilhaire S., Rubio A.J., Dynamic surface temperature measurements in ICs. Proceedings of the IEEE, 2006, 94(8): 1519–1533.

    Article  Google Scholar 

  92. Wielgoszewski G., Gotszalk T., Scanning thermal microscopy (SThM): how to map temperature and thermal properties at the nanoscale. Advances in Imaging and Electron Physics. Elsevier, 2015, 190: 177–221.

    Article  Google Scholar 

  93. Dazzi A., Prazeres R., Glotin F., Ortega J., Al-Sawaftah M.d., De Frutos M.J.U., Chemical mapping of the distribution of viruses into infected bacteria with a photothermal method. Ultramicroscopy, 2008, 108(7): 635–641.

    Article  Google Scholar 

  94. Tovee P., Pumarol M., Zeze D., Kjoller K., Kolosov O., Nanoscale spatial resolution probes for scanning thermal microscopy of solid state materials. Journal of Applied Physics, 2012, 112(11): 114317.

    Article  ADS  Google Scholar 

  95. Rangelow I., Gotszalk T., Grabiec P., Edinger K., Abedinov N.J., Thermal nano-probe. Microelectronic Engineering, 2001, 57: 737–748.

    Article  Google Scholar 

  96. Edinger K., Gotszalk T., Rangelow I., Novel high resolution scanning thermal probe. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2001, 19(6): 2856–2860.

    Article  ADS  Google Scholar 

  97. Gaitas A., Gianchandani Y.B., An experimental study of the contact mode AFM scanning capability of polyimide cantilever probes. Ultramicroscopy, 2006, 106(89): 874–880.

    Article  Google Scholar 

  98. Zhang Y., Dobson P., Weaver J., High temperature imaging using a thermally compensated cantilever resistive probe for scanning thermal microscopy. Journal of Vacuum Science & Technology B, 2012, 30(1): 010601.

    Article  ADS  Google Scholar 

  99. Zhou H., Mills G., Chong B., Midha A., Donaldson L., Weaver J., Recent progress in the functionalization of atomic force microscope probes using electron-beam nanolithography. Journal of Vacuum Science & Technology A, 1999, 17(4): 2233–2239.

    Article  ADS  Google Scholar 

  100. Dobson P., Mills G., Weaver J., Microfabricated temperature standard based on Johnson noise measurement for the calibration of micro-and nano-thermometers. Review of Scientific Instruments, 2005, 76(5): 054901.

    Article  ADS  Google Scholar 

  101. Dobson P.S., Weaver J. M., Mills G., New methods for calibrated scanning thermal microscopy (SThM). SENSORS, 2007 IEEE, 2007, pp. 708–711. DOI: https://doi.org/10.1109/ICSENS.2007.4388498.

    Chapter  Google Scholar 

  102. Wilson A.A., Rojo M.M., Abad B., Perez J.A., Maiz J., Schomacker J., Martín-Gonzalez M., Borca-Tasciuc D.A., Borca-Tasciuc T., Thermal conductivity measurements of high and low thermal conductivity films using a scanning hot probe method in the 3? mode and novel calibration strategies. Nanoscale, 2015, 7(37): 15404–15412.

    Article  ADS  Google Scholar 

  103. Puyoo E., Grauby S., Rampnoux J.M., Rouvière E., Dilhaire S., Scanning thermal microscopy of individual silicon nanowires. Journal of Applied Physics, 2011, 109(2): 024302.

    Article  ADS  Google Scholar 

  104. Hirotani J., Amano J., Ikuta T., Nishiyama T., Takahashi K., Carbon nanotube thermal probe for quantitative temperature sensing. Sensors and Actuators A: Physical, 2013, 199: 1–8.

    Article  Google Scholar 

  105. Thompson Pettes M., Shi L., A reexamination of phonon transport through a nanoscale point contact in vacuum. Journal of Heat Transfer, 2014, 136: 032401.

    Article  Google Scholar 

  106. Zhang Y., Dobson P., Weaver J., Batch fabricated dual cantilever resistive probe for scanning thermal microscopy. Microelectronic Engineering, 2011, 88(8): 2435–2438.

    Article  Google Scholar 

  107. Ge Y., Quantitative measurement using scanning thermal microscopy. University of Glasgow, 2016.

    Google Scholar 

  108. Nelson B.A., King W.P., Measuring material softening with nanoscale spatial resolution using heated silicon probes. Review of Scientific Instruments, 2007, 78(2): 023702.

    Article  ADS  Google Scholar 

  109. Rodriguez A.W., Reid M.H., Johnson S.G., Fluctuating-surface-current formulation of radiative heat transfer for arbitrary geometries. Physical Review B: Condensed Matter and Materials Physics, 2012, 86(22): 220302.

    Article  ADS  Google Scholar 

  110. Juszczyk J., Wojtol M., Bodzenta J., DC experiments in quantitative scanning thermal microscopy. International Journal of Thermophysics, 2013, 34(4): 620–628.

    Article  ADS  Google Scholar 

  111. Bae J. H., Ono T., Esashi M., Scanning probe with an integrated diamond heater element for nanolithography. Applied Physics Letters, 2003, 82(5): 814–816.

    Article  ADS  Google Scholar 

  112. Lantz M. A., Binnig G. K., Despont M., Drechsler U., A micromechanical thermal displacement sensor with nanometre resolution. Nanotechnology, 2005, 16(8): 1089.

    Article  ADS  Google Scholar 

  113. Lee J., Beechem T., Wright T.L., Nelson B.A., Graham S., King W.P., Electrical, thermal, and mechanical characterization of silicon microcantilever heaters. Journal of Microelectromechanical Systems, 2006, 15(6): 1644–1655.

    Article  Google Scholar 

  114. Goericke F., Lee J., King W.P., Microcantilever hotplates with temperature-compensated piezoresistive strain sensors. Sensors and Actuators A: Physical, 2008, 143(2): 181–190.

    Article  Google Scholar 

  115. Corbin E.A., King W.P., Electrical noise characteristics of a doped silicon microcantilever heater-thermometer. Applied Physics Letters, 2011, 99(26): 263107.

    Article  ADS  Google Scholar 

  116. Pavlov A.J., Nanoscale measurements of the absolute temperature from the tunneling of the free electron gas. Applied Physics Letters, 2004, 85 (11): 2095–2097.

    Google Scholar 

  117. Leinhos T., Stopka M., Oesterschulze E., Micromachined fabrication of Si cantilevers with Schottky diodes integrated in the tip. Applied Physics A: Materials Science & Processing, 1998, 66: S65–S69.

    Article  ADS  Google Scholar 

  118. Heisig S., Danzebrink H.U., Leyk A., Mertin W., Münster S., Oesterschulze E., Monolithic gallium arsenide cantilever for scanning near-field microscopy. Ultramicroscopy, 1998, 71(14): 99–105.

    Article  Google Scholar 

  119. Zhou H., Midha A., Mills G., Thoms S., Murad S., Weaver J., Generic scanned-probe microscope sensors by combined micromachining and electron-beam lithography Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 1998, 16(1): 54–58.

    Article  ADS  Google Scholar 

  120. Kittel A., Müller-Hirsch W., Parisi J., Biehs S.-A., Reddig D., Holthaus M., Near-field heat transfer in a scanning thermal microscope. Physical Review Letters, 2005, 95(22): 224301.

    Article  ADS  Google Scholar 

  121. Kaushal P., Chand S., Osvald J., Current-voltage characteristics of Schottky diode simulated using semiconductor device equations. International Journal of Electronics, 2013, 100(5): 686–698.

    Article  ADS  Google Scholar 

  122. Yang Y., Qi J., Liao Q., Li H., Wang Y., Tang L., Zhang Y., High-performance piezoelectric gate diode of a single polar-surface dominated ZnO nanobelt. Nanotechnology, 2009, 20(12): 125201.

    Article  ADS  Google Scholar 

  123. Luo K., Shi Z., Varesi J., Majumdar A., Sensor nanofabrication, performance, and conduction mechanisms in scanning thermal microscopy. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 1997, 15(2): 349–360.

    Article  ADS  Google Scholar 

  124. Shi L., Majumdar A., Thermal transport mechanisms at nanoscale point contacts. Journal of Heat Transfer, 2002, 124(2): 329–337.

    Article  Google Scholar 

  125. Shi L., Kwon O., Miner A.C., Design and batch fabrication of probes for sub-100 nm scanning thermal microscopy. Journal of Microelectromechanical Systems, 2001, 10(3): 370–378.

    Article  Google Scholar 

  126. Majumdar A., Varesi J., Nanoscale temperature distributions measured by scanning Joule expansion microscopy. Journal of Heat Transfer, 1998, 120(2): 297–305.

    Article  Google Scholar 

  127. Varesi J., Majumdar A., Scanning Joule expansion microscopy at nanometer scales. Applied Physics Letters, 1998, 72(1): 37–39.

    Article  ADS  Google Scholar 

  128. Cretin B., Scanning near-field thermal and thermoacoustic microscopy: performances and limitations. Superlattices and Microstructures, 2004, 35(36): 253–268.

    Article  ADS  Google Scholar 

  129. Yang R., Chen G., Laroche M., Taur Y., Simulation of nanoscale multidimensional transient heat conduction problems using ballistic-diffusive equations and phonon Boltzmann equation. Journal of Heat Transfer, 2005, 127(3): 298–306.

    Article  Google Scholar 

  130. Dazzi A., Prazeres R., Glotin F., Ortega J., Local infrared microspectroscopy with subwavelength spatial resolution with an atomic force microscope tip used as a photothermal sensor. Optics Letters, 2005, 30(18): 2388–2390.

    Article  ADS  Google Scholar 

  131. Deniset-Besseau A., Prater C.B., Virolle M., Dazzi A., Monitoring triacylglycerols accumulation by atomic force microscopy based infrared spectroscopy in streptomyces species for biodiesel applications. The Journal of Physical Chemistry Letters, 2014, 5(4): 654–658.

    Article  Google Scholar 

  132. Gimzewski J.K., Gerber C., Meyer E., Schlittler R., Observation of a chemical reaction using a micromechanical sensor. Chemical Physics Letters, 1994, 217(56): 589–594.

    Article  ADS  Google Scholar 

  133. Berger R., Gerber C., Gimzewski J., Meyer E., Güntherodt H., Thermal analysis using a micromechanical calorimeter. Applied Physics Letters, 1996, 69(1): 40. DOI: https://doi.org/10.1063/1.118111.

    Article  ADS  Google Scholar 

  134. Narayanaswamy A., Gu N., Heat transfer from freely suspended bimaterial microcantilevers. Journal of Heat Transfer, 2011, 133(4): 042401.

    Article  Google Scholar 

  135. Nakabeppu O., Chandrachood M., Wu Y., Lai J., Majumdar A., Scanning thermal imaging microscopy using composite cantilever probes. Applied Physics Letters, 1995, 66(6): 694–696.

    Article  ADS  Google Scholar 

  136. Kim K.J., King W.P., Thermal conduction between a heated microcantilever and a surrounding air environment. Applied Thermal Engineering, 2009, 29(89): 1631–1641.

    Article  Google Scholar 

  137. Kwon B., Jiang J., Schulmerich M.V., Xu Z., Bhargava R., Liu G.L., King W.P., Bimaterial microcantilevers with black silicon nanocone arrays. Sensors and Actuators A: Physical, 2013, 199: 143–148.

    Article  Google Scholar 

  138. Canetta C., Narayanaswamy A., Measurement of optical coupling between adjacent bi-material microcantilevers. Review of Scientific Instruments, 2013, 84(10): 105002.

    Article  ADS  Google Scholar 

  139. McConney M.E., Kulkarni D. D., Jiang H., Bunning T. J., Tsukruk V.V., A new twist on scanning thermal microscopy. Nano Letters, 2012, 12(3): 1218–1223.

    Article  ADS  Google Scholar 

  140. Aigouy L., Tessier G., Mortier M., Charlot B., Scanning thermal imaging of microelectronic circuits with a fluorescent nanoprobe. Applied Physics Letters, 2005, 87(18): 184105.

    Article  ADS  Google Scholar 

  141. Samson B., Aigouy L., Löw P., Bergaud C., Kim B., Mortier M., Ac thermal imaging of nanoheaters using a scanning fluorescent probe. Applied Physics Letters, 2008, 92(2): 023101.

    Article  ADS  Google Scholar 

  142. Saïdi E., Labéguerie-Egéa J., Billot L., Lesueur J., Mortier M., Aigouy L., Imaging Joule Heating in an 80 nm Wide titanium Nanowire by thermally modulated fluorescence. International Journal of Thermophysics, 2013, 34(89): 1405–1412.

    Article  ADS  Google Scholar 

  143. Aigouy L., Lalouat L., Mortier M., Löw P., Bergaud C., Note: a scanning thermal probe microscope that operates in liquids. Review of Scientific Instruments, 2011, 82(3): 036106.

    Article  ADS  Google Scholar 

  144. Prasher R., Predicting the thermal resistance of nanosized constrictions. Nano Letters, 2005, 5(11): 2155–2159.

    Article  ADS  Google Scholar 

  145. Cahill D.G., Ford W.K., Goodson K.E., Mahan G.D., Majumdar A., Maris H.J., Merlin R., Phillpot S.R., Nanoscale thermal transport. Journal of Applied Physics, 2003, 93(2): 793–818.

    Article  ADS  Google Scholar 

  146. Beechem T., Graham S., Hopkins P., Norris P., Role of interface disorder on thermal boundary conductance using a virtual crystal approach. Applied Physics Letters, 2007, 90(5): 054104.

    Article  ADS  Google Scholar 

  147. Prasher R.S., Phelan P.E., Microscopic and macroscopic thermal contact resistances of pressed mechanical contacts. Journal of Applied Physics, 2006, 100(6): 063538.

    Article  ADS  Google Scholar 

  148. Kim K., Jaung S., Chung J., Won J., Kwon O., Lee J.S., Park S., Choi Y.K., Quantitative scanning thermal microscopy with double scan technique. International Conference on Micro/Nanoscale Heat Transfer, 2008, pp. 899–904. DOI: https://doi.org/10.1115/MNHT2008-52266.

    Google Scholar 

  149. Chapuis P.O., Greffet J.J., Joulain K., Volz S., Heat transfer between a nano-tip and a surface. Nanotechnology, 2006, 17(12): 2978.

    Article  ADS  Google Scholar 

  150. Hinz M., Marti O., Gotsmann B., Lantz M., Dürig U., High resolution vacuum scanning thermal microscopy of HfO2 and SiO2. Applied Physics Letters, 2008, 92(4): 043122.

    Article  ADS  Google Scholar 

  151. Kim P., Shi L., Majumdar A., McEuen P.L., Thermal transport measurements of individual multiwalled nanotubes. Physical Review Letters, 2001, 87(21): 215502.

    Article  ADS  Google Scholar 

  152. Assy A., Lefèvre S., Chapuis P. O., Gomès S., Analysis of heat transfer in the water meniscus at the tip-sample contact in scanning thermal microscopy. Journal of Physics D: Applied Physics, 2014, 47(44): 442001.

    Article  Google Scholar 

  153. David L., Gomes S., Raynaud M., Modelling for the thermal characterization of solid materials by dc scanning thermal microscopy. Journal of Physics D: Applied Physics, 2007, 40(14): 4337.

    Article  ADS  Google Scholar 

  154. Assy A., Gomès S., Temperature-dependent capillary forces at nano-contacts for estimating the heat conduction through a water meniscus. Nanotechnology, 2015, 26(35): 355401.

    Article  Google Scholar 

  155. Luna M., Colchero J., Baró A., Study of water droplets and films on graphite by noncontact scanning force microscopy. The Journal of Physical Chemistry B, 1999, 103(44): 9576–9581.

    Article  Google Scholar 

  156. He M., Szuchmacher Blum A., Aston D. E., Buenviaje C., Overney R. M., Luginbühl R., Critical phenomena of water bridges in nanoasperity contacts. The Journal of Chemical Physics, 2001, 114(3): 1355–1360.

    Article  ADS  Google Scholar 

  157. Van Zwol P., Palasantzas G., De Hosson J., Influence of roughness on capillary forces between hydrophilic surfaces. Physical Review E Covering Statistical, Nonlinear, Biological, and Soft Matter Physics, 2008, 78(3): 031606.

    Article  ADS  Google Scholar 

  158. Guo L., Zhao X., Bai Y., Qiao L., Water adsorption behavior on metal surfaces and its influence on surface potential studied by in situ SPM. Applied Surface Science, 2012, 258(22): 9087–9091.

    Article  ADS  Google Scholar 

  159. Shen S., Narayanaswamy A., Chen G., Surface phonon polaritons mediated energy transfer between nanoscale gaps. Applied Surface Science, 2009, 9(8): 2909–2913.

    Google Scholar 

  160. Gotsmann B., Lantz M.A., Knoll A., Dürig U., Nanoscale thermal and mechanical interactions studies using heatable probes. Nanotechnology: Online, 2010, 121169. DOI: https://doi.org/10.1002/9783527628155.

    Google Scholar 

  161. Liu Z., Feng Y., Qiu L., Near-field radiation analysis and thermal contact radius determination in the thermal conductivity measurement based on SThM open-loop system. Applied Physics Letters, 2022, 120: 113506.

    Article  ADS  Google Scholar 

  162. Yovanovich M.M., Culham J.R., Teertstra P., Analytical modeling of spreading resistance in flux tubes, half spaces, and compound disks. IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part A, 1998, 21(1): 168–176.

    Article  Google Scholar 

  163. Alvarez F., Jou D., Memory and nonlocal effects in heat transport: From diffusive to ballistic regimes. Applied Physics Letters, 2007, 90(8): 083109.

    Article  ADS  Google Scholar 

  164. Volz S.G., Chen G., Molecular dynamics simulation of thermal conductivity of silicon nanowires. Applied Physics Letters, 1999, 75(14): 2056–2058.

    Article  ADS  Google Scholar 

  165. Assy A., Gomès S., Heat transfer at nanoscale contacts investigated with scanning thermal microscopy. Applied Physics Letters, 2015, 107(4): 043105.

    Article  ADS  Google Scholar 

  166. Fletcher P.C., Lee B., King W.P., Thermoelectric voltage at a nanometer-scale heated tip point contact. Nanotechnology, 2011, 23(3): 035401.

    Article  ADS  Google Scholar 

  167. Gotsmann B., Lantz M.A., Quantized thermal transport across contacts of rough surfaces. Nature materials, 2013, 12(1): 59–65.

    Article  ADS  Google Scholar 

  168. Puyoo E., Grauby S., Rampnoux J.M., Rouviere E., Dilhaire S., Thermal exchange radius measurement: application to nanowire thermal imaging. Review of Scientific Instruments, 2010, 81(7): 073701.

    Article  ADS  Google Scholar 

  169. Liu Z., Feng Y., Qiu L., Near-field radiation analysis and thermal contact radius determination in the thermal conductivity measurement based on SThM open-loop system. Applied Physics Letters, 2022, 120(11): 113506. DOI: https://doi.org/10.1063/5.0080083.

    Article  ADS  Google Scholar 

  170. Soudi A., Dawson R.D., Gu Y., Quantitative heat dissipation characteristics in current-carrying GaN nanowires probed by combining scanning thermal microscopy and spatially resolved Raman spectroscopy. ACS Nano, 2011, 5(1): 255–262.

    Article  Google Scholar 

  171. Royall, P.G., Craig D.Q., Price D.M., Reading M., Lever T., An investigation into the use of micro-thermal analysis for the solid state characterisation of an HPMC tablet formulation. International Journal of Pharmaceutics, 1999, 192(1): 97–103.

    Article  Google Scholar 

  172. Six K., Murphy J., Weuts I., Craig D.Q., Verreck G., Peeters J., Brewster M., Van den Mooter G., Identification of phase separation in solid dispersions of itraconazole and Eudragit® E100 using microthermal analysis. Pharmaceutical Research, 2003, 20(1): 135–138.

    Article  Google Scholar 

  173. Harding L., Wood J., Reading M., Craig D.Q., Two-and three-dimensional imaging of multicomponent systems using scanning thermal microscopy and localized thermomechanical analysis. Analytical Chemistry, 2007, 79(1): 129–139.

    Article  Google Scholar 

  174. Menges F., Mensch P., Schmid H., Riel H., Stemmer A., Gotsmann B., Temperature mapping of operating nanoscale devices by scanning probe thermometry. Nature Communications, 2016, 7(1): 1–6.

    Article  Google Scholar 

  175. Martinek J., Klapetek P., Campbell A.C., Methods for topography artifacts compensation in scanning thermal microscopy. Ultramicroscopy, 2015, 155: 55–61.

    Article  Google Scholar 

  176. Park K., Krivoy E., Nair H., Bank S.R., Yu E., Cross-sectional scanning thermal microscopy of ErAs/GaAs superlattices grown by molecular beam epitaxy. Nanotechnology, 2015, 26(26): 265701.

    Article  ADS  Google Scholar 

  177. Haeger T., Wilmes M., Heiderhoff R., Riedl T., Simultaneous mapping of thermal conductivity, thermal diffusivity, and volumetric heat capacity of halide perovskite thin films: a novel nanoscopic thermal measurement technique. The Journal of Physical Chemistry Letters, 2019, 10(11): 3019–3023.

    Article  Google Scholar 

  178. Reihani A., Luan, Y., Yan S., Lim J.W., Meyhofer E., Reddy P., Quantitative mapping of unmodulated temperature fields with nanometer resolution. ACS Nano, 2021, 16(1): 939–950.

    Article  Google Scholar 

  179. Dong L., Li Y., Experimental identification of topography-based artifact phenomenon for micro-/nanoscale thermal characterization of polymeric materials in scanning thermal microscopy. AIP Advances, 2022, 12(4): 045311. DOI: https://doi.org/10.1063/5.0088360.

    Article  ADS  Google Scholar 

  180. Balandin A.A., Ghosh S., Bao W., Calizo I., Teweldebrhan D., Miao F., Lau C.N., Superior thermal conductivity of single-layer graphene. Nano Letters, 2008, 8(3): 902–907.

    Article  ADS  Google Scholar 

  181. Cai W., Moore A. L., Zhu Y., Li X., Chen S., Shi L., Ruoff R.S., Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Letters, 2010, 10(5): 1645–1651.

    Article  ADS  Google Scholar 

  182. Yoon K., Hwang G., Chung J., goo Kim H., Kwon O., Kihm K.D., Lee J.S., Measuring the thermal conductivity of residue-free suspended graphene bridge using null point scanning thermal microscopy. Carbon, 2014, 76: 77–83.

    Article  Google Scholar 

  183. Pumarol M.E., Rosamond M.C., Tovee P., Petty M.C., Zeze D.A., Falko V., Kolosov O.V., Direct nanoscale imaging of ballistic and diffusive thermal transport in graphene nanostructures. Nano Letters, 2012, 12(6): 2906–2911.

    Article  ADS  Google Scholar 

  184. Hwang G., Kwon O., Measuring the size dependence of thermal conductivity of suspended graphene disks using null-point scanning thermal microscopy. Nanoscale, 2016, 8(9): 5280–5290.

    Article  ADS  Google Scholar 

  185. Yu Y.J., Han M.Y., Berciaud S., Georgescu A. B., Heinz T.F., Brus L.E., Kim K.S., Kim P., High-resolution spatial mapping of the temperature distribution of a Joule self-heated graphene nanoribbon. Applied Physics Letters, 2011, 99(18): 183105.

    Article  ADS  Google Scholar 

  186. Menges F., Riel H., Stemmer A., Dimitrakopoulos C., Gotsmann B., Thermal transport into graphene through nanoscopic contacts. Physical Review Letters, 2013, 111(20): 205901.

    Article  ADS  Google Scholar 

  187. Tortello M., Colonna S., Bernal M., Gomez J., Pavese M., Novara C., Giorgis F., Maggio M., Guerra G., Saracco G., Effect of thermal annealing on the heat transfer properties of reduced graphite oxide flakes: A nanoscale characterization via scanning thermal microscopy. Carbon, 2016, 109: 390–401.

    Article  Google Scholar 

  188. Li Y.F., Lin H., Mehra N., Identification of thermal barrier areas in graphene oxide/boron nitride membranes by scanning thermal microscopy: thermal conductivity improvement through membrane assembling. ACS Applied Nano Materials, 2021, 4(4): 4189–4198.

    Article  Google Scholar 

  189. Li Y.F., Zhang T., Zhang Y., Zhao C. G., Zheng N. M., Yu W. A comprehensive experimental study regarding size dependence on thermal conductivity of graphene oxide nanosheet. International Communications in Heat and Mass Transfer, 2022, 130: 105764.

    Article  Google Scholar 

  190. Xu K.Q., Ye S., Lei L., Meng L., Hussain S., Zheng Z., Zeng H., Ji W., Xu R., Cheng Z., Dynamic interfacial mechanical-thermal characteristics of atomically thin two-dimensional crystals. Nanoscale, 2018, 10(28): 13548–13554.

    Article  Google Scholar 

  191. Vaziri S., Yalon E., Muñoz Rojo M., Suryavanshi S.V., Zhang H., McClellan C.J., Bailey C.S., Smithe K.K., Gabourie A.J., Chen V., Ultrahigh thermal isolation across heterogeneously layered two-dimensional materials. Science Advances, 2019, 5(8): 1325.

    Article  ADS  Google Scholar 

  192. Nasr Esfahani E., Ma F., Wang S., Ou Y., Yang J., Li J., Quantitative nanoscale mapping of three-phase thermal conductivities in filled skutterudites via scanning thermal microscopy. National Science Review, 2018, 5(1): 59–69.

    Article  Google Scholar 

  193. Chen W., Feng Y., Qiu L., Zhang X., Scanning thermal microscopy method for thermal conductivity measurement of a single SiO2 nanoparticle. International Journal of Heat and Mass Transfer, 2020, 154: 119750.

    Article  Google Scholar 

  194. Remmert J.L., Wu Y., Lee J., Shannon M.A., King W., Contact potential measurement using a heated atomic force microscope tip. Applied Physics Letters, 2007, 91(14): 143111.

    Article  ADS  Google Scholar 

  195. Zhang Y., Castillo E.E., Mehta R.J., Ramanath G., Borca-Tasciuc T., A noncontact thermal microprobe for local thermal conductivity measurement. Review of Scientific Instruments, 2011, 82(2): 024902.

    Article  ADS  Google Scholar 

  196. Wilson A.A., Borca-Tasciuc T., Quantifying non-contact tip-sample thermal exchange parameters for accurate scanning thermal microscopy with heated microprobes. Review of Scientific Instruments, 2017, 88(7): 074903.

    Article  ADS  Google Scholar 

  197. Gomès S., David L., Lysenko V., Descamps A, Nychyporuk T., Raynaud M., Application of scanning thermal microscopy for thermal conductivity measurements on meso-porous silicon thin films. Journal of Physics D: Applied Physics, 2007, 40(21): 6677–6683.

    Article  ADS  Google Scholar 

  198. Newby P.J., Canut B., Bluet J.M., Gomès S., Isaiev M., Burbelo R., Termentzidis K., Chantrenne P., Fréchette L. G., Lysenko V., Amorphization and reduction of thermal conductivity in porous silicon by irradiation with swift heavy ions. Journal of Applied Physics, 2013, 114(1): 014903.

    Article  ADS  Google Scholar 

  199. Zheng L., Zhu, T., Li Y., Wu H., Yi C., Zhu J., Gong X., Enhanced thermoelectric performance of F4-TCNQ doped FASnI3 thin films. Journal of Materials Chemistry A, 2020, 8 (47): 25431–25442.

    Google Scholar 

  200. Hu S., Ren Z., Djurišić A.B., Rogach A.L., Metal halide perovskites as emerging thermoelectric materials. ACS Energy Letters, 2021, 6(110): 3882–3905.

    Article  Google Scholar 

  201. Luo K., Herrick R., Majumdar A., Petroff P., Scanning thermal microscopy of a vertical-cavity surface-emitting laser. Applied Physics Letters, 1997, 71(12): 1604–1606.

    Article  ADS  Google Scholar 

  202. Shi L., Plyasunov S., Bachtold A., McEuen P.L., Majumdar A., Scanning thermal microscopy of carbon nanotubes using batch-fabricated probes. Applied Physics Letters, 2000, 77(26): 4295–4297.

    Article  ADS  Google Scholar 

  203. Boroumand F., Voigt M., Lidzey D., Hammiche A., Hill G., Imaging Joule heating in a conjugated-polymer light-emitting diode using a scanning thermal microscope. Applied Physics Letters, 2004, 84(24): 4890–4892.

    Article  ADS  Google Scholar 

  204. Shi L., Zhou J., Kim P., Bachtold A., Majumdar A., McEuen P.L., Thermal probing of energy dissipation in current-carrying carbon nanotubes. Journal of Applied Physics, 2009, 105(10): 104306.

    Article  ADS  Google Scholar 

  205. Saïdi E., Babinet N., Lalouat L., Lesueur J., Aigouy L., Volz S., Labéguerie-Egéa J., Mortier M., Tuning temperature and size of hot hpots and hot-spot arrays. Small, 2011, 7(2): 259–264.

    Article  Google Scholar 

  206. Kwon O., Shi L., Majumdar A. J., Scanning thermal wave microscopy (STWM). Journal of Heat Transfer, 2003, 125(1): 156–163.

    Article  Google Scholar 

  207. Choi D., Poudel N., Cronin S.B., Shi L., Effects of basal-plane thermal conductivity and interface thermal conductance on the hot spot temperature in graphene electronic devices. Applied Physics Letters, 2017, 110(7): 073104.

    Article  ADS  Google Scholar 

  208. Choi D., Poudel N., Park S., Akinwande D., Cronin S. B., Watanabe K., Taniguchi T., Yao Z., Shi L., Large reduction of hot spot temperature in graphene electronic devices with heat-spreading hexagonal boron nitride. ACS Applied Materials & Interfaces, 2018, 10(13): 11101–11107.

    Article  Google Scholar 

  209. Yasaei P., Tu Q., Xu Y., Verger L., Wu J., Barsoum M.W., Shekhawat G.S., Dravid V.P., Mapping hot spots at heterogeneities of few-layer Ti3C2 MXene sheets. ACS nano, 2019, 13(3): 3301–3309.

    Article  Google Scholar 

  210. Yasaei P., Murthy A.A., Xu Y., Dos Reis R., Shekhawat G.S., Dravid V.P., Spatial mapping of hot-spots at lateral heterogeneities in monolayer transition metal dichalcogenides. Advanced Materials, 2019, 31(24): 1808244.

    Article  Google Scholar 

  211. Datye I.M., Rojo M.M., Yalon E., Deshmukh S., Mleczko M.J., Pop E., Localized heating and switching in MoTe2-based resistive memory devices. Nano Letters, 2020, 20(2): 1461–1467.

    Article  ADS  Google Scholar 

  212. Gucmann F., Pomeroy J.W., Kuball M., Scanning thermal microscopy for accurate nanoscale device thermography. Nano Today, 2021, 39: 101206.

    Article  Google Scholar 

  213. Liu D., Chen X., Yan Y., Zhang Z., Jin Z., Yi K., Zhang C., Zheng Y., Wang Y., Yang J., Xu X., Chen J., Lu Y., Wei D., Wee A.T., Wei D., Conformal hexagonal-boron nitride dielectric interface for tungsten diselenide devices with improved mobility and thermal dissipation. Nature Communications, 2019, 10: 1188.

    Article  ADS  Google Scholar 

  214. Zhang Y., Yan Y., Guo J., Lu T., Liu J., Zhou J., Xu X., Superior thermal dissipation in graphene electronic device through novel heat path by electron-phonon coupling. ES Energy & Environment, 2020, 8: 42–47.

    Google Scholar 

  215. Zhang Y., Zhang C., Wei D., Bai X., Xu X., Nanoscale thermal mapping of few-layer organic crystals. CrystEngComm, 2019, 21: 5402–5409. DOI: https://doi.org/10.1039/C9CE00827F.

    Article  Google Scholar 

  216. Pei Y., Wang H., Snyder G., Band engineering of thermoelectric materials. Advanced Materials, 2012, 24(46): 6125–6135.

    Article  Google Scholar 

  217. Muñoz Rojo M., Grauby S., Rampnoux J. M., Caballero-Calero O., Martín-González M., Dilhaire S., Fabrication of Bi2Te3 nanowire arrays and thermal conductivity measurement by 3ω-scanning thermal microscopy. Journal of Applied Physics, 2013, 113(5): 054308.

    Article  ADS  Google Scholar 

  218. Varandani D., Agarwal K., Brugger J., Mehta B.R., Scanning thermal probe microscope method for the determination of thermal diffusivity of nanocomposite thin films. Review of Scientific Instruments, 2016, 87(8): 084903.

    Article  ADS  Google Scholar 

  219. Perez-Taborda J. A., Rojo M. M., Maiz J., Neophytou N., Martin-Gonzalez M., Ultra-low thermal conductivities in large-area Si-Ge nanomeshes for thermoelectric applications. Scientific Reports, 2016, 6: 32778.

    Article  ADS  Google Scholar 

  220. Mehra N., Li Y., Yang X., Li J., Kashfipour M.A., Gu J., Zhu J., Engineering molecular interaction in polymeric hybrids: Effect of thermal linker and polymer chain structure on thermal conduction. Composites Part B: Engineering, 2019, 166: 509–515.

    Article  Google Scholar 

  221. Mehra N., Li Y., Zhu J., Small organic linkers with hybrid terminal groups drive efficient phonon transport in polymers. The Journal of Physical Chemistry C, 2018, 122(19): 10327–10333.

    Article  Google Scholar 

  222. Li Y., Mehra N., Ji T., Yang X., Mu L., Gu J., Zhu J., The stiffness-thermal conduction relationship at the composite interface: the effect of particle alignment on the long-range confinement of polymer chains monitored by scanning thermal microscopy. Nanoscale, 2018, 10(4): 1695–1703.

    Article  Google Scholar 

  223. Mehra N., Mu L., Ji T., Li Y., Zhu J., Moisture driven thermal conduction in polymer and polymer blends. Composites Science and Technology, 2017, 151: 115123.

    Article  Google Scholar 

  224. Rojo M.M., Martín J., Grauby S., Borca-Tasciuc T., Dilhaire S., Martin-Gonzalez M., Decrease in thermal conductivity in polymeric P3HT nanowires by size-reduction induced by crystal orientation: new approaches towards thermal transport engineering of organic materials. Nanoscale, 2014, 6(14): 7858–7865.

    Article  ADS  Google Scholar 

  225. Tsukruk V.V., Gorbunov V.V., Fuchigami N., Microthermal analysis of polymeric materials. Thermochimica Acta, 2002, 395(12): 151–158.

    Article  Google Scholar 

  226. Boutaous M., Gomes S., Zakariaa R., Zinet M., Bourgin P., Analysis of the microstructure of polymers with regard to their thermomechanical history: STHM and DSC measurements, ASME International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013, pp. V07AT08A029. DOI: https://doi.org/10.1115/IMECE2013-64961.

    Google Scholar 

  227. Dawson A., Rides M., Maxwell A.S., Cuenat A., Samano A.R., Scanning thermal microscopy techniques for polymeric thin films using temperature contrast mode to measure thermal diffusivity and a novel approach in conductivity contrast mode to the mapping of thermally conductive particles. Polymer Testing, 2015, 41: 198–208.

    Article  Google Scholar 

  228. Kharintsev S.S., Chernykh E.A., Fishman A.I., Saikin S.K., Alekseev A.M., Salakhov M.K., Photoinduced heating of freestanding azo-polymer thin films monitored by scanning thermal microscopy. The Journal of Physical Chemistry C, 2017, 121(5): 3003012.

    Article  Google Scholar 

  229. Heiderhoff R., Li H., Riedl T., Dynamic near-field scanning thermal microscopy on thin films. Microelectronics Reliability, 2013, 53(911): 1413–1417.

    Article  Google Scholar 

  230. Xu D., Zhang Y., Zhou H., Meng Y., Wang S., Characterization of adhesive penetration in wood bond by means of scanning thermal microscopy (SThM). Holzforschung, 2016, 70(4): 323–330.

    Article  Google Scholar 

  231. Haeberle W., Pantea M., Hoerber J., Nanometer-scale heat-conductivity measurements on biological samples. Ultramicroscopy, 2006, 106(89): 678–686.

    Article  Google Scholar 

  232. Bozec L., Odlyha M., Thermal denaturation studies of collagen by microthermal analysis and atomic force microscopy. Biophysical Journal, 2011, 101(1): 228–236.

    Article  ADS  Google Scholar 

  233. Nakanishi K., Kogure A., Kuwana R., Takamatsu H., Ito K., Development of a novel scanning thermal microscopy (SThM) method to measure the thermal conductivity of biological cells. Biocontrol Science, 2017, 22(3): 175–180.

    Article  Google Scholar 

  234. Xu D., Fu X., Xu C., Wang S., Sun J., Zhou D., Micro characteristics of biomass investigated by scanning thermal microscopy. Chemistry and Industry of Forest Products, 2015, 35(4): 1–7.

    Google Scholar 

  235. Xu D., Zhang Y., Zhou H., Meng Y., Wang S., Characterization of adhesive penetration in wood bond by means of scanning thermal microscopy (SThM). Holzforschung, 2016, 70: 323–330.

    Article  Google Scholar 

  236. Xu D., Ding T., Li Y., Zhang Y., Zhou D., Wang S., Transition characteristics of a carbonized wood cell wall investigated by scanning thermal microscopy (SThM). Wood Science and Technology, 2017, 51: 831–843.

    Article  Google Scholar 

  237. Vay O., Obersriebnig M., Müller U., Konnerth J., Gindl-Altmutter W., Studying thermal conductivity of wood at cell wall level by scanning thermal microscopy (SThM). Holzforschung, 2013, 67: 155–159.

    Article  Google Scholar 

  238. Shah D.U., Konnerth J., Ramage M.H., Gusenbauer C., Mapping thermal conductivity across bamboo cell walls with scanning thermal microscopy. Scientific Reports, 2019, 9: 16667.

    Article  ADS  Google Scholar 

  239. Tovee P.D., Kolosov O.V., Mapping nanoscale thermal transfer in-liquid environment—immersion scanning thermal microscopy. Nanotechnology, 2013, 24(46): 465706.

    Article  ADS  Google Scholar 

  240. Chung J., Kim K., Hwang G., Kwon O., Jung S., Lee J., Lee J.W., Kim G.T., Quantitative temperature measurement of an electrically heated carbon nanotube using the null-point method. Review of Scientific Instruments, 2010, 81(11): 114901.

    Article  ADS  Google Scholar 

  241. Chung J., Hwang G., Kim H., Yang W., Kwon O., Towards an accurate measurement of thermal contact resistance at chemical vapor deposition-grown graphene/SiO2 interface through null point scanning thermal microscopy. Journal of Nanoscience and Nanotechnology, 2015, 15(11): 9077–9082.

    Article  Google Scholar 

  242. Hwang G., Chung J., Kwon O., Enabling low-noise null-point scanning thermal microscopy by the optimization of scanning thermal microscope probe through a rigorous theory of quantitative measurement. Review of Scientific Instruments, 2014, 85(11): 114901.

    Article  ADS  Google Scholar 

  243. Wischnath U.F., Welker J., Munzel M., Kittel A., The near-field scanning thermal microscope. Review of Scientific Instruments, 2008, 79(7): 073708.

    Article  ADS  Google Scholar 

  244. Jeong W., Kim K., Kim Y., Lee W., Reddy P., Characterization of nanoscale temperature fields during electromigration of nanowires. Scientific Reports, 2014, 4: 4975.

    Article  ADS  Google Scholar 

  245. Kim K., Jeong W., Lee W., Reddy P., Ultra-high vacuum scanning thermal microscopy for nanometer resolution quantitative thermometry. ACS Nano, 2012, 6(5): 4248–4257.

    Article  Google Scholar 

  246. Park J., Koo S., Kim K., Measurement of thermal boundary resistance in ∼10 nm contact using UHV-SThM. International Journal of Nanotechnology, 2019, 16(45): 263–272.

    Article  ADS  Google Scholar 

  247. Tovee P.D., Tinker-Mill C., Kjoller K., Allsop D., Weightman P., Surman M., Siggel-King M.R., Wolski A., Kolosov O.V., Time dynamics of photothermal vs optoacoustic response in mid IR nanoscale biospectroscopy. arXiv preprint arXiv:1509.00726.

  248. Bodzenta J., Juszczyk J., Kazmierczak-Balata A., Wielgoszewski G., Photothermal measurement by the use of scanning thermal microscopy. International Journal of Thermophysics, 2014, 35(12): 2316–2327.

    Article  ADS  Google Scholar 

  249. Katzenmeyer A. M., Holland G., Chae J., Band A., Kjoller K., Centrone A., Mid-infrared spectroscopy beyond the diffraction limit via direct measurement of the photothermal effect. Nanoscale, 2015, 7(42): 17637–17641.

    Article  ADS  Google Scholar 

  250. Martinek J., Valtr M., Hortvík V., Grolich P., Briand D., Shaker M., Klapetek P., Large area scanning thermal microscopy and infrared imaging system. Measurement Science and Technology, 2019, 30(3): 035010.

    Article  ADS  Google Scholar 

  251. Spiece J., Evangeli C., Lulla K., Robson A., Robinson B., Kolosov O., Improving accuracy of nanothermal measurements via spatially distributed scanning thermal microscope probes. Journal of Applied Physics, 2018, 124(1): 015101.

    Article  ADS  Google Scholar 

  252. Gomès S., Consortium Q., In Quantiheat project: main results and products. 23rd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC), IEEE, 2017. DOI: https://doi.org/10.1109/THERMINIC.2017.8233831.

    Google Scholar 

  253. Mahan, G., The tunneling of heat. Applied Physics Letters, 2011, 98(13): 132106.

    Article  ADS  Google Scholar 

  254. Budaev B.V., Bogy D.B., Mechanisms of heat transport across a nano-scale gap in heat assisted magnetic recording. Journal of Applied Physics, 2012, 111(12): 124508.

    Article  ADS  Google Scholar 

  255. Sellan D.P., Landry E., Sasihithlu K., Narayanaswamy A., McGaughey A., Amon C., Phonon transport across a vacuum gap. Physical Review B Covering Condensed Matter and Materials Physics, 2012, 85(2): 024118.

    Article  Google Scholar 

  256. Reddy P., Jang S.Y., Segalman R.A., Majumdar A., Thermoelectricity in molecular junctions. Science, 2007, 315(5818): 1568–1571.

    Article  ADS  Google Scholar 

  257. Lepri S., Livi R., Politi A., Thermal conduction in classical low-dimensional lattices. Physics Reports, 2003, 377: 180.

    Article  MathSciNet  Google Scholar 

  258. Lee W., Kim K., Jeong W., Zotti L.A., Pauly F., Cuevas J. C., Reddy P., Heat dissipation in atomic-scale junctions. Nature, 2013, 498(7453): 209–212.

    Article  ADS  Google Scholar 

Download references

Acknowledgment

The authors acknowledge funding from the National Natural Science Foundation of China (51876112) and Shanghai Sailing Program (21YF1414200), Discipline of Shanghai-Materials Science and Engineering, and Shanghai Engineering Research Center of Advanced Thermal Functional Materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhang, Y., Liu, Y. et al. A Comprehensive Review for Micro/Nanoscale Thermal Mapping Technology Based on Scanning Thermal Microscopy. J. Therm. Sci. 31, 976–1007 (2022). https://doi.org/10.1007/s11630-022-1654-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-022-1654-1

Keywords

Navigation