Skip to main content
Log in

Effect of Strain Rate on the Dynamic Recrystallization Behavior in a Nitrogen-Enhanced 316L(N)

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this paper, the effect of strain rate (in the domain of 0.001 to 10 s−1) on dynamic recrystallization (DRX) kinetics in a nitrogen-enhanced 316L(N) austenitic stainless steel during high temperature [≥1123 K (≥850 °C)] deformation is reported. In the low strain rate domain (i.e., <0.1 s−1), the DRX is predominantly governed by higher growth of DRX grains resulting in a higher DRX fraction and larger DRX grain size. On the other hand, DRX at higher strain rates (i.e., ≥1 s−1) is mainly controlled by higher nucleation resulting in higher DRX fraction with a finer grain size. In the intermediate strain rate regime of 0.1 s−1, sluggish kinetics of DRX is observed since neither the nucleation nor the growth of DRX grains is predominant. The annealing twinning event, which may accelerates the DRX kinetics, is also observed to occur more frequently during the low and high strain rate deformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. The GOS is average difference in orientation between the average grain orientation and all measurements in a grain.[36]

  2. In KAM, the misorientation between a grain at the center of the kernel and all points at the perimeter of the kernel are measured whereas in LAM, the average misorientations between all neighboring points within the kernel area are measured and the average is calculated.

References

  1. J. G. Kumar, M. Chowdary, V. Ganesan, R.K. Paretkar, K.B.S. Rao, and M.D. Mathew: Nuc. Eng. Des., 2010, vol. 240, pp. 1363–1370.

    Article  Google Scholar 

  2. J.B. Vogt: J. Mater. Proc. Technol., 2001, vol. 117, pp. 364-369.

    Article  Google Scholar 

  3. K.H. Lo, C.H. Shek, and J.K.L. Lai, Mater. Sci. Eng. R, 2009, vol. 65, pp. 39-104.

    Article  Google Scholar 

  4. M.G. Pujar, U. K. Mudali, and S.S. Singh, Corros. Sci., 2011, vol. 53, pp. 4178–86.

    Article  Google Scholar 

  5. R.W. Cahn, and P. Haasen: Physical Metallurgy, Vol. III, Cambridge University Press, New York, NY, 1996.

    Book  Google Scholar 

  6. D. Ponge, and G. Gottstein: Acta Mater., 1998, vol. 46, pp. 69-80.

    Article  Google Scholar 

  7. H. Miura, T. Sakai, R. Mogawa, and G. Gottstein: Scripta Mater., 2004, vol. 51, pp. 671–675.

    Article  Google Scholar 

  8. A. Dehghan-Manshadi, M.R. Barnett, and P.D. Hodgson: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 1359–70.

    Article  Google Scholar 

  9. S. Mandal, S.K. Mishra, A. Kumar, I. Samajdar, P.V. Sivaprasad, T. Jayakumar and B. Raj: Phil. Mag., 2008, vol. 88, pp. 883–97.

    Article  Google Scholar 

  10. D.G. Cram, X.Y. Fang, H.S. Zurob, Y.J.M. Bréchet, C.R. Hutchinson, Acta Mater., 2012, vol. 60, pp. 6390–6404.

    Article  Google Scholar 

  11. A. Belyakov, K. Tsuzaki, H. Miura, and T. Sakai: Acta Mater., 2003, vol. 51, pp. 847–861.

    Article  Google Scholar 

  12. T. Sakai, and J.J. Jonas: Acta Metall., 1984, vol. 32, pp. 189-209.

    Article  Google Scholar 

  13. X. Wang, E. Brunger, and G. Gottstein: Scripta Mater., 2002, vol. 46, pp. 875–80.

    Article  Google Scholar 

  14. A. Gholinia, I. Brough, J. Humphreys, D. McDonald, and P. Bate: Mater. Sci. Technol., 2010, vol. 26, pp. 685.

    Article  Google Scholar 

  15. S. Mandal, A.K. Bhaduri, and V.S. Sarma: Metal. Mater. Trans. A, 2012, vol. 43, pp. 2056 -2068.

    Article  Google Scholar 

  16. P. Karduck, G. Gottstein, and H. Mecking: Acta Metall., 1983, vol. 31, pp. 1525–36.

    Article  Google Scholar 

  17. P. Poelt, C. Sommitsch, S. Mitsche, and M. Walter: Mater. Sci. Eng. A, 2006, vol. 420, pp. 306-314.

    Article  Google Scholar 

  18. H. Beladi, P. Cizek, and P.D. Hodgson: Metal. Mater. Trans. A, 2009, vol. 40, pp. 1175 – 1189.

    Article  Google Scholar 

  19. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas: Prog. Mater. Sci., 2014, vol. 60, pp. 130–207.

    Article  Google Scholar 

  20. S. Mandal, P.V. Sivaprasad, and V. Subramanya Sarma: Mater. Manuf. Process., 2010, vol. 25, pp. 54–59.

    Article  Google Scholar 

  21. R. Kapoor, B. Paul, S. Raveendra, I. Samajdar, and J.K. Chakravartty: Metal. Mater. Trans. A, 2009, vol. 40, pp. 818-827.

    Article  Google Scholar 

  22. S. Mandal, P.V. Sivaprasad, and R.K. Dube: J. Mater. Sci., 2007, vol. 42, pp. 2724-2734.

    Article  Google Scholar 

  23. S. Mandal, A.K. Bhaduri, and V.S. Sarma: Metal. Mater. Trans. A, 2012, vol. 43, pp. 410 – 414.

    Article  Google Scholar 

  24. Y. Wang, W.Z. Shao, L. Zhen, L. Yang, and X.M. Zhang: Mater. Sci. Eng. A, 2008, vol. 497, pp. 479-486.

    Article  Google Scholar 

  25. H. Miura, M. Ozama, R. Mogawa, and T. Sakai: Scripta Mater., 2003, vol. 48, pp. 1501-1505.

    Article  Google Scholar 

  26. G. Qingmiao, L. Defu, P. Haijian, G. Shengli, H. Jie, and D. Peng: Rare Met., 2012, Vol. 31, pp. 215–20.

    Article  Google Scholar 

  27. U. Andrade, M.A. Meyers, K.S. Vecchio, and A.H. Chokshi: Acta Metall. Mater., 1994, vol. 42, pp. 3183 – 3195.

    Article  Google Scholar 

  28. Y. Han, D. Zou, Z. Chen, G. Fan, and W. Zhang: Mater. Charac. 2011, vol. 62, pp. 198 – 203.

    Article  Google Scholar 

  29. S. Mitsche, C. Sommitsch, D. Huber, M. Stockinger, and P. Poelt: Mater. Sci. Eng. A, 2011, vol. 528, pp. 3754-3760.

    Article  Google Scholar 

  30. Y. Cao, H. Di, J. Zhang, J. Zhang, T. Ma, and R.D.K. Misra: Mater. Sci. Eng. A, 2013, vol. 585, pp. 71-85.

    Article  Google Scholar 

  31. H.Q. Sun, Y.-N. Shi, M.-X. Zhang, and K. Lu: Acta Mater., 2007, vol. 55, pp. 975 - 982.

    Article  Google Scholar 

  32. J. Favre, Y. Koizumi, A. Chiba, D. Fabregue, and E. Maire: Metall. Mater. Trans A, 2013, vol. 44, pp. 2819-2830.

    Article  Google Scholar 

  33. D.G. Brandon, Acta Metall., 1966, vol. 14, pp. 1479–84.

    Article  Google Scholar 

  34. S. Mandal, A.K. Bhaduri, and V.S. Sarma: J. Mater. Sci., 2011, vol. 46, pp. 275 – 284.

    Article  Google Scholar 

  35. D. Samantaray, S. Mandal, V. Kumar, S.K. Albert, A.K. Bhaduri, and T. Jayakumar: Mater. Sci. Eng. A, 2012, Vol. 552, pp. 236–44.

    Article  Google Scholar 

  36. S. Mandal, A.K. Bhaduri, and V.S. Sarma: Metal. Mater. Trans. A, 2011, vol. 42, pp. 1062 – 1072.

    Article  Google Scholar 

  37. R.L. Goetz, and S.L. Semiatin: J. Mater. Eng. Perform., 2001, vol. 10, pp. 710–717.

    Article  Google Scholar 

  38. M.C. Mataya, and V.E. Sackschewsky: Metall. Mater. Trans A, 1994, vol. 41, pp. 2737–2752.

    Article  Google Scholar 

  39. A. Banerjee, S. Raju, R. Divakar, and E. Mohandas: Int. J. Thermophys., 2007, Vol. 28, 97–108.

    Article  Google Scholar 

  40. G. Owen and V. Randle: Scripta Mater., 2006, vol. 55, pp. 959–62.

    Article  Google Scholar 

  41. H. Gleiter: Acta Metall., 1969, vol. 17, pp. 1421–28.

    Article  Google Scholar 

  42. S. Mahajan, C.S. Pande, M.A. Imam, and B.B. Rath: Acta Mater., 1997, vol. 45, pp. 2633-2638.

    Article  Google Scholar 

  43. W. Roberts, and B. Ahlblom: Acta Metal., 1978, vol. 26, pp. 801-813.

    Article  Google Scholar 

  44. I. Mejia, A. Bedolla-Jacuinde, C. Maldonado, and J.M. Cabrera: Mater. Sci. Eng. A, 2011, vol. 528, pp. 4133–4140.

    Article  Google Scholar 

  45. M. Shaban, and B. Eghbali: Mater. Sci. Eng. A, 2010, vol. 527, pp. 4320–4325.

    Article  Google Scholar 

  46. T. Sakai, and M. Ohashi: Mater. Sci. Technol., 1990, vol. 6, pp. 1251-1257.

    Article  Google Scholar 

  47. J.E. Bailey, and P.B. Hirsch: Proc R Soc A, 1962, vol. 267, pp. 11-30.

    Article  Google Scholar 

  48. D.G. Cram, H.S. Zurob, Y.J.M. Brechet, and C.R. Hutchinson: Acta Mater., 2009, vol. 57, pp. 5218–5228.

    Article  Google Scholar 

  49. H.S. Zurob, Y. Brechet, and J. Dunlop: Acta Mater., 2006, vol. 54, pp. 3983–3990.

    Article  Google Scholar 

  50. F.J. Humphreys, and M. Hatherly: Recrystallization and Related Annealing Phenomena, Elsevier, Oxford, 2004.

    Google Scholar 

  51. C.S. Pande, M.A. Imam, and B.B. Rath, Metall. Trans. A, 1990, vol. 21A, pp. 2891–96.

    Article  Google Scholar 

  52. W. Wang, F. Brisset, A.L. Helbert, D. Solas, I. Drouelle, M.H. Mathon, and T. Baudin, Mater. Sci. Eng. A, 2014, vol. 589, pp. 112–18.

    Article  Google Scholar 

  53. A.M. Wusatowska-Sarnek, H. Miura, and T. Sakai: Mater. Sci. Eng. A, 2002, vol. 323, pp. 177-186.

    Article  Google Scholar 

  54. Y. Wang, W.Z. Shao, L. Zhen, and X.M. Zhang: Mater. Sci. Eng. A, 2008, vol. 486, pp. 321-332.

    Article  Google Scholar 

  55. G. Gottstein, M. Frommert, M. Goerdeler, and N. Schäfer, Mater. Sci. Eng. A, 2004, vol. 387–389, pp. 604–608.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to D. Samantaray, IGCAR, Kalpakkam, R.K. Jha and Vinod Kumar, RDCIS, SAIL, Ranchi for their help during compression testing in Gleeble thermomechanical simulator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumantra Mandal.

Additional information

Manuscript submitted December 15, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, S., Jayalakshmi, M., Bhaduri, A.K. et al. Effect of Strain Rate on the Dynamic Recrystallization Behavior in a Nitrogen-Enhanced 316L(N). Metall Mater Trans A 45, 5645–5656 (2014). https://doi.org/10.1007/s11661-014-2480-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2480-1

Keywords

Navigation