Skip to main content
Log in

Novel Approach of Electroshock Treatment for Defect Repair in Near-β Titanium Alloy Manufactured via Directed Energy Deposition

  • Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A subsecond and novel approach of electroshock treatment (EST) is used in this study to repair defects in directed-energy-deposited Ti-5Al-5Mo-5V-3Cr-1Zr near-β titanium alloy. After EST, the porosity of the specimen decreased significantly from 0.81 to 0.1 pct. Large cracks observed at the bottom of the above mentioned near-β titanium alloy became intermittent small cracks and the number of voids decreased. The defects in the top and middle regions of the specimens are repaired. The potential defect repair is attributable to energy concentration, which promoted the coalescence of defect tips, and thermal stresses, which compressed the defects inward and closed them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1. Z. Zhao, J. Chen, H. Tan, G. Zhang, X. Lin, and W. Huang: Scripta Mater., 2018, vol. 146, pp. 187–91.

    Article  CAS  Google Scholar 

  2. 2. J.H. Martin, B.D. Yahata, J.M. Hundley, J.A. Mayer, T.A. Schaedler, and T.M. Pollock: Nature, 2017, vol. 549, p. 365.

    Article  CAS  Google Scholar 

  3. 3. H. Hou, E. Simsek, T. Ma, N.S. Johnson, S. Qian, C. Cisse, D. Stasak, N.A. Hasan, L. Zhou, and Y. Hwang: Science, 2019, vol. 366, pp. 1116–21.

    Article  CAS  Google Scholar 

  4. 4. Y.-J. Liang, D. Liu, and H.-M. Wang: Scripta Mater., 2014, vol. 74, pp. 80–83.

    Article  CAS  Google Scholar 

  5. 5. N. Shamsaei, A. Yadollahi, L. Bian, and S.M. Thompson: Addit. Manufact., 2015, vol. 8, pp. 12–35.

    Google Scholar 

  6. 6. S.M. Thompson, L. Bian, N. Shamsaei, and A. Yadollahi: Addit. Manufact., 2015, vol. 8, pp. 36–62.

    Google Scholar 

  7. 7. N. Jones, R. Dashwood, D. Dye, and M. Jackson: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 1944–54.

    Article  CAS  Google Scholar 

  8. 8. J.W. Pegues, S. Shao, N. Shamsaei, N. Sanaei, A. Fatemi, D.H. Warner, P. Li, and N. Phan: Int. J. Fatigue, 2020, vol. 132, p. 105358.

    Article  CAS  Google Scholar 

  9. T.R. Smith, J.D. Sugar, J.M. Schoenung, and C. SanMarchi: Mater. Sci. Eng. A, 2019, vol. 765, p. 138268.

    Article  CAS  Google Scholar 

  10. 10. L. Li: J. Mater. Sci., 2006, vol. 41, pp. 7886–93.

    Article  CAS  Google Scholar 

  11. 11. S. Liu, J. Liu, L. Wang, R.L. Ma, Y. Zhong, W. Lu, and L. Zhang: Scripta Mater., 2020, vol. 181, pp. 121–26.

    Article  CAS  Google Scholar 

  12. 12. L.-C. Zhang, L.-Y. Chen, and L. Wang: Adv. Eng. Mater., 2020, vol. 22, p. 1901258.

    Article  CAS  Google Scholar 

  13. 13. R. Biswal, X. Zhang, A.K. Syed, M. Awd, J. Ding, F. Walther, and S. Williams: Int. J. Fatigue, 2019, vol. 122, pp. 208–17.

    Article  CAS  Google Scholar 

  14. D. Masaylo, S. Igoshin, A. Popovich, and V. Popovich: Mater. Today Proc., 2020.

  15. 15. P. Zhang, X. Zhou, X. Cheng, H. Sun, H. Ma, and Y. Li: Addit. Manufact., 2020, vol. 32, p. 101026.

    Google Scholar 

  16. R. Reese, H. Bheda, and W. Mondesir: U.S. Patent No. 10,421,267, 2019.

  17. S. Das, R. Bansal, and J. Gambone: U.S. Patent No. 9,522,426, 2016.

  18. 18. C. Zopp, S. Blümer, F. Schubert, and L. Kroll: Ain Shams Eng. J., 2017, vol. 8, pp. 475–79.

    Article  Google Scholar 

  19. S. Bakhshivash, H. Asgari, P. Russo, C. Dibia, M. Ansari, A. Gerlich, and E. Toyserkani: Int. J. Adv. Manuf. Technol., 2019, pp. 1–11.

  20. 20. A. Hatefi: School of Metallurgy and Materials, University of Birmingham, Birmingham, United Kingdom, 2013.

    Google Scholar 

  21. 21. C. Qiu, G.A. Ravi, and M.M. Attallah: Mater. Des., 2015, vol. 81, pp. 21–30.

    Article  CAS  Google Scholar 

  22. H.D. Carlton, K.D. Klein, and J.W. Elmer: Sci. Technol. Weld. Join., 2019, pp. 1–9.

  23. 23. H. Schwab, M. Bönisch, L. Giebeler, T. Gustmann, J. Eckert, and U. Kühn: Mater. Des., 2017, vol. 130, pp. 83–89.

    Article  CAS  Google Scholar 

  24. C. Liu, L. Yu, A. Zhang, X. Tian, D. Liu, and S. Ma: Mater. Sci. Eng. A, 2016, vol. 673, pp. 185–92.

    Article  CAS  Google Scholar 

  25. 25. W. Tillmann, C. Schaak, J. Nellesen, M. Schaper, M. Aydinöz, and K.-P. Hoyer: Addit. Manufact., 2017, vol. 13, pp. 93–102.

    CAS  Google Scholar 

  26. 26. X. Yuan, Q. Wei, S. Wen, and Y. Shi: Hot Work. Technol., 2014, vol. 4, p. 91.

    Google Scholar 

  27. 27. P. Han, A. Tofangchi, A. Deshpande, S. Zhang, and K. Hsu: Proc. Manufact., 2019, vol. 34, pp. 672–77.

    Google Scholar 

  28. 28. N.O. Larrosa, W. Wang, N. Read, M.H. Loretto, C. Evans, J. Carr, U. Tradowsky, M.M. Attallah, and P.J. Withers: Theor. Appl. Fract. Mech., 2018, vol. 98, pp. 123–33.

    Article  CAS  Google Scholar 

  29. 29. L. Xie, H. Guo, Y. Song, C. Liu, Z. Wang, L. Hua, L. Wang, and L.-C. Zhang: Mater. Charact., 2020, vol. 161, p. 110137.

    Article  CAS  Google Scholar 

  30. 30. L. Xie, C. Liu, Y. Song, H. Guo, Z. Wang, L. Hua, L. Wang, and L.-C. Zhang: J. Mater. Res. Technol., 2020, vol. 9, pp. 2455–66.

    Article  CAS  Google Scholar 

  31. 31. H. Song, Z. Wang, X. He, and J. Duan: Sci. Rep., 2017, vol. 7, p. 7097.

    Article  Google Scholar 

  32. 32. T. Yu, D. Deng, G. Wang, and H. Zhang: J. Cleaner Prod., 2016, vol. 113, pp. 989–94.

    Article  CAS  Google Scholar 

  33. 33. Z. Lu, C. Guo, P. Li, Z. Wang, Y. Chang, G. Tang, and F. Jiang: J. Alloys Compd., 2017, vol. 708, pp. 834–43.

    Article  CAS  Google Scholar 

  34. A. Hosoi, T. Nagahama, and Y. Ju: Mater. Sci. Eng. A, 2012, vol. 533, pp. 38–42.

    Article  CAS  Google Scholar 

  35. 35. Z. Lu, F. Jiang, Y. Cheng, C. Guo, H. Hou, and Y. Liu: Suxing Gongcheng Xuebao, 2015, vol. 22, pp. 117–27.

    Article  CAS  Google Scholar 

  36. 36. A. Karme, A. Kallonen, V.-P. Matilainen, H. Piili, and A. Salminen: Phys. Procedia, 2015, vol. 78, pp. 347–56.

    Article  CAS  Google Scholar 

  37. 37. H. Gong, V.K. Nadimpalli, K. Rafi, T. Starr, and B. Stucker: Technologies, 2019, vol. 7, p. 44.

    Article  Google Scholar 

  38. 38. G.J. Marshall, W.J. Young, S.M. Thompson, N. Shamsaei, S.R. Daniewicz, and S. Shao: JOM, 2016, vol. 68, pp. 778–90.

    Article  CAS  Google Scholar 

  39. 39. B.A. Szost, S. Terzi, F. Martina, D. Boisselier, A. Prytuliak, T. Pirling, M. Hofmann, and D.J. Jarvis: Mater. Design, 2016, vol. 89, pp. 559–67.

    Article  CAS  Google Scholar 

  40. 40. H. Conrad, N. Karam, and S. Mannan: Scripta Metall., 1984, vol. 18, pp. 275–80.

    Article  CAS  Google Scholar 

  41. H. Conrad: Mater. Sci. Eng. A, 2000, vol. 287, pp. 276–87.

    Article  Google Scholar 

  42. H. Conrad: Mater. Sci. Eng. A, 2000, vol. 287, pp. 227–37.

    Article  Google Scholar 

  43. 43. H. Conrad, N. Karam, and S. Mannan: Scripta Metall., 1983, vol. 17, pp. 411–16.

    Article  CAS  Google Scholar 

  44. 44. X. Du, B. Wang, and J. Guo: J. Mater. Res., 2007, vol. 22, pp. 1947–53.

    Article  CAS  Google Scholar 

Download references

This study was financially supported by the National Natural Science Foundation of China (Grant Nos. 51901165 and 51975441), the Fundamental Research Funds for the Central Universities (Grant Nos. WUT 2018IVA063, WUT 2018IVA064, and 205207013), the “Chu Tian Scholar” project of Hubei Province (Grant No. CTXZ2017-05), the 111 Project (Grant No. B17034), and the Innovative Research Team Development Program of Ministry of Education of China (Grant No. IRT_17R83). We thank Dr. Yanping Lu for the assistance with X-CT characterization.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin Hua or Liqiang Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted May 5, 2020; accepted November 2, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, L., Guo, H., Song, Y. et al. Novel Approach of Electroshock Treatment for Defect Repair in Near-β Titanium Alloy Manufactured via Directed Energy Deposition. Metall Mater Trans A 52, 457–461 (2021). https://doi.org/10.1007/s11661-020-06098-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-06098-0

Navigation