Skip to main content
Log in

Improvement of Strength–Ductility Balance by the Simultaneous Increase in Ferrite and Martensite Strength in Dual-Phase Steels

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This work investigates the effect of increasing both martensite phase and ferrite phase strength on tensile properties and fracture behavior of dual-phase (DP) steels. The martensite phase strength is varied by changing its carbon contents and tempering process, whereas the ferrite phase strength is varied by dispersion of nano-sized vanadium carbides (VC) precipitates in the ferrite phase and also by changing its total fraction in DP samples. It is found that strengthening of the martensite phase improved the tensile strength with almost no loss of the tensile strength–uniform elongation balance. This is attributed to the enhancement of strain partitioning between the ferrite and martensite phase so that the work hardening rate increased. On the other hand, strengthening of ferrite phase effectively improved both the tensile strength and the tensile strength–post-uniform elongation balance due to suppression of strain partitioning which likely promoted homogenous deformation after necking. More importantly, a simultaneous increase in the strength of martensite phase and ferrite phase leads to a moderate phase strength difference, which is revealed as a promising strategy to achieve high strength in addition to a good balance of tensile strength, uniform elongation, and post-uniform elongation in low-carbon DP steels. Furthermore, the quantitative analysis of void formation reveals that decohesion of the interface between the ferrite phase and martensite phase is the dominant fracture mechanism, which is less likely to be affected by phase strength difference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L.F. Ramos, D.K. Matlock, and G. Krauss: Metall. Trans. A., 1979, vol. 10, pp. 259–61.

    Article  Google Scholar 

  2. G. Krauss: Metall. Trans. A., 1987, vol. 10, pp. 671–9.

    Google Scholar 

  3. C.C. Tasan, M. Diehl, D. Yan, M. Bechtold, F. Roters, L. Schemmann, C. Zheng, N. Peranio, D. Ponge, M. Koyama, K. Tsuzaki, and D. Raabe: Annu. Rev. Mater. Res., 2015, vol. 45, pp. 391–441.

    Article  CAS  Google Scholar 

  4. G.R. Speich and R.L. Miller: in Structure and Properties of Dual Phase Steels: R.A. Kott and J.W. Morris, eds., TMS-AIME, Warrendale, PA, 1979, pp. 145–82.

  5. A.A. Sayed and S. Kheirandish: Mater. Sci. Eng. A., 2012, vol. 532, pp. 21–5.

    Article  CAS  Google Scholar 

  6. Y. Tomota: J. Mater. Sci., 1990, vol. 25, pp. 5179–84.

    Article  Google Scholar 

  7. O.R. Jardim, W.P. Longo, and K.K. Chawla: Metallography., 1984, vol. 17, pp. 123–30.

    Article  CAS  Google Scholar 

  8. A. Nishimoto, Y. Hosoya, and K. Nakaoka: in Fundamentals of Dual-Phase Steels, R.A. Kot and B.L. Bramfitt, eds., TMS AIME, Warrendale, PA, 1981, pp. 447–53.

  9. J. Kang, Y. Ososkov, J. Embury, D. Wilkinson, C. Landron, E. Maire, O. Bouaziz, J. Adrien, L. Lecarme, A. Bareggi, M. Di Michiel, and C. Verdu: Scr. Mater., 2007, vol. 56, pp. 999–1002.

    Article  CAS  Google Scholar 

  10. R.G. Davies: in Fundamentals of Dual-Phase Steels, R.A. Kot and B.L. Bramfitt, eds., TMS AIME, Warrendale, PA, 1981, pp. 265–77.

  11. G.R. Speich: Metall. Trans., 1972, vol. 3, pp. 1043–54.

    Article  CAS  Google Scholar 

  12. I. Machida, M. Narita, R. Kureura, M. Morita, N. Aoyagi, and M. Sano: SAE Technical Paper, No. 940536, SAE International, Warrendale, PA, 1994.

  13. N. Kamikawa, M. Hirohashi, and Y. Sato: Elango C, G. Miyamoto and T. Furuhara: ISIJ Int., 2015, vol. 55, pp. 1781–90.

    CAS  Google Scholar 

  14. E. Chandiran, Y. Sato, N. Kamikawa, G. Miyamoto, and T. Furuhara: Metall. Mater. Trans. A., 2019, vol. 50A, pp. 4111–26.

    Article  Google Scholar 

  15. T. Furuhara, K. Kikumoto, H. Saito, T. Sekine, T. Ogawa, S. Morito, and T. Maki: ISIJ Int., 2008, vol. 48(8), pp. 1038–45.

    Article  CAS  Google Scholar 

  16. K. Kuo: J. Iron Steel. Inst., 1956, vol. 184, pp. 258–68.

    CAS  Google Scholar 

  17. G. Miyamoto, R. Hori, B. Poorganji, and T. Furuhara: ISIJ Int., 2011, vol. 51, pp. 1733–9.

    Article  CAS  Google Scholar 

  18. G. Krauss: Mater. Sci. Eng. A., 1999, vol. 275, pp. 40–57.

    Article  Google Scholar 

  19. E. Tekin and P.M. Kelly: J. Iron Steel Inst., 1965, vol. 203, pp. 715–20.

    CAS  Google Scholar 

  20. E. Smith: Acta Metal., 1966, vol. 14, pp. 583–93.

    Article  CAS  Google Scholar 

  21. R.A. Grange, C.R. Hribal, and L.F. Porter: Metall. Trans. A., 1977, vol. 8, pp. 1775–85.

    Article  Google Scholar 

  22. G. Krauss: Steel Res. Inter., 2018, vol. 89, pp. 1–18.

    Article  Google Scholar 

  23. Y. Zhang, C. Zhao, M. Sato, G. Miyamoto, and T. Furuhara: ISIJ Int., 2021, vol. 61(5), pp. 1641–9.

    Article  CAS  Google Scholar 

  24. J. Gerbase, J.D. Emburry, and R.M. Hobbs: in Structure and Properties of Dual-Phase Steels, R.A. Kot and J.W. Morris, eds., TMS-AIME, Warrendale, PA, 1979, pp. 114–44.

  25. T. Sakaki, K. Sugimoto, and T. Fukuzato: Acta Metall., 1983, vol. 31, pp. 1737–46.

    Article  CAS  Google Scholar 

  26. D.K. Matlock, G. Krauss, L. F. Ramos, and G. S. Huppi: in Structure and Properties of Dual-Phase Steels, R.A. Kot and J.W. Morris, eds., TMS-AIME, Warrendale, PA, 1979, pp. 62–90.

  27. B. Grushko and B.-Z. Weiss: Scr. Met., 1988, vol. 23, pp. 865–70.

    Article  Google Scholar 

  28. T. Tanaka, M. Nishida, K. Hashiquchi, and T. Kato: in Structure and Properties of Dual-Phase Steels. R.A. Kot and J.W. Morris, eds., TMS-AIME, Warrendale, PA, 1979, pp. 221–41.

  29. N. Kamikawa, K. Sato, G. Miyamoto, M. Murayama, N. Sekido, K. Tsuzaki, and T. Furuhara: Acta Mater., 2015, vol. 83, pp. 383–96.

    Article  CAS  Google Scholar 

  30. N. Kamikawa, Y. Abe, G. Miyamoto, Y. Funakawa, and T. Furuhara: ISIJ Int., 2014, vol. 54, pp. 212–21.

    Article  CAS  Google Scholar 

  31. A.-P. Pierman, O. Bouaziz, T. Pardoen, P.J. Jacques, and L. Brassart: Acta Mater., 2014, vol. 73, pp. 298–311.

    Article  CAS  Google Scholar 

  32. H. Ghassemi-Armaki, R. Maaß, S. Bhat, S. Sriram, J. Greer, and K. Kumar: Acta Mater., 2014, vol. 62, pp. 197–211.

    Article  CAS  Google Scholar 

  33. R. Priestner and C.L. Aw: Scrip. Met., 1984, vol. 18, pp. 133–6.

    Article  CAS  Google Scholar 

  34. U. Liedl, S. Traint, and E. Werner: Comput. Mater. Sci., 2002, vol. 25, pp. 122–8.

    Article  CAS  Google Scholar 

  35. M. Asadi, B.C.D. Cooman, and H. Palkowski: Mater. Sci. Eng. A., 2012, vol. 538, pp. 42–52.

    Article  CAS  Google Scholar 

  36. K. Park, M. Nishiyama, N. Nakada, T. Tsuchiyama, and S. Takaki: Mater. Sci. Eng. A., 2014, vol. 604, pp. 135–41.

    Article  CAS  Google Scholar 

  37. G. Avramovic-Cingara, C.A. Saleh, M. Jain, and D. Wilkinson: Metall. Mater. Trans. A., 2009, vol. 40A, pp. 3117–27.

    Article  CAS  Google Scholar 

  38. X.J. He, N. Terao, and A. Berghezan: J Mater Sci., 1984, vol. 18, pp. 367–73.

    CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported partly by a project of “Creation of New Principles in the Multi-scale Design of Steels Based on Light Element Strategy” through the Core Research for Evolutional Science and Technology in the Japan Science and Technology Agency (JST-CREST) and partly by a project of “Research on the Relation between Microstructure and Ductile Fracture in Steel” in the Iron and Steel Institute of Japan (ISIJ), which are gratefully appreciated. EC thanks financial support from the Japan International Cooperation Agency (JICA) through the FRIENDSHIP scholarship program. NK also thanks financial support from the Grant-in-Aid for Young Scientists (A) (Grant No. 23686103) through the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elango Chandiran.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 25, 2021; accepted September 28, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandiran, E., Kamikawa, N., Sato, Y. et al. Improvement of Strength–Ductility Balance by the Simultaneous Increase in Ferrite and Martensite Strength in Dual-Phase Steels. Metall Mater Trans A 52, 5394–5408 (2021). https://doi.org/10.1007/s11661-021-06477-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06477-1

Navigation