Skip to main content
Log in

Environment-Assisted Fatigue Crack Propagation (EAFCP) Behavior of Ti64 Alloy Fabricated by Direct Energy Deposition (DED) Process

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Environment-assisted fatigue crack propagation (EAFCP) behavior of as-built and β-annealed Ti64 specimens manufactured by direct energy deposition (DED) process was examined in air and 3.5 pct NaCl solution under an anodic applied potential of Ecorr + 0.05 VSCE. As-built DED Ti64 specimen was found to be susceptible to EAFCP in 3.5 pct NaCl solution, and β anneal did not decrease the sensitivity to EAFCP. It was suggested that Cl bearing environment tended to decrease the tendency for crack bifurcation during EAFCP of DED Ti64 specimen, because of local corrosion damage at boundaries between α and β phases. Since crack bifurcation increases the resistance to fatigue crack propagation (FCP) by reducing effective ∆K (stress intensity factor range) at the tip of crack, the FCP rates of DED Ti64 specimen increased in 3.5 pct NaCl solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. R.R. Boyer: Mater. Sci. Eng. A, 2007, vol. 213, pp. 103–14.

    Article  Google Scholar 

  2. O.S. Fatoba, O.S. Adesina, and A.P.I. Popoola: Int. J. Adv. Manuf. Technol., 2018, vol. 97, pp. 2341–50.

    Article  Google Scholar 

  3. R.S. Razavi, M. Salehi, M. Ramazani, and H.C. Man: Corrosion Sci., 2009, vol. 51, pp. 2324–29.

    Article  CAS  Google Scholar 

  4. A. Azarniya, X.G. Colera, M.J. Mirzaali, S. Sovizi, F. Bartolomeu, M.K. Weglowski, W.W. Wits, C.Y. Yap, J. Ahn, G. Miranda, F.S. Silva, H.R.M. Hosseini, S. Ramakrishna, and A.A. Zadpoor: J. Alloys Compd., 2019, vol. 804, pp. 163–91.

    Article  CAS  Google Scholar 

  5. K. Bower, S. Murray, A. Reinhart, and A. Nieto: Results Mater, 2020, vol. 8, 100122.

    Article  Google Scholar 

  6. A. Leon, G.K. Levy, T. Ron, A. Shirizly, and E. Aghion: Addit. Manuf., 2020, vol. 33, 101039.

    CAS  Google Scholar 

  7. J.B. Lee, D.I. Seo, and H.Y. Chang: Met. Mater. Int., 2020, vol. 26(1), pp. 39–45.

    Article  CAS  Google Scholar 

  8. D.I. Seo and J.B. Lee: J. Electrochem. Soc., 2020, vol. 167(10), p.101509.

    Article  CAS  Google Scholar 

  9. D.H. Abdeen and B.R. Palmer: Rapid Prototyping J., 2016, vol. 22, pp. 322–29.

    Article  Google Scholar 

  10. Y. Byun, S.W. Lee, S.M. Seo, J.T. Yeom, S.E. Kim, N.H. Kang, and J.K. Hong: Met. Mater. Int., 2018, vol. 24, pp. 1213–220.

    Article  CAS  Google Scholar 

  11. B.E. Carroll, T.A. Palmer, and A.M. Beese: Acta Mater., 2015, vol. 87, pp. 309–20.

    Article  CAS  Google Scholar 

  12. S.Y. Kim, H.J. Oh, J.G. Kim, and S.S. Kim: Met. Mater. Int., 2022, vol. 28, pp. 205–15.

    Article  Google Scholar 

  13. J. Yang, H. Yang, H. Yu, Z. Wang, and X. Zeng: Metall. Mater. Trans. A, 2017, vol. 48, pp. 3583–93.

    Article  CAS  Google Scholar 

  14. D.I. Seo and J.B. Lee: J. Electrochem. Soc., 2019, vol. 166, pp. 428–33.

    Article  Google Scholar 

  15. N. Dai, J. Zhang, Y. Chen, and L.C. Zhang: J. Electrochem. Soc., 2017, vol. 164, pp. 428–34.

    Article  Google Scholar 

  16. L.P. Borrego, J.D. Jesus, J.A.M. Ferreira, J.D. Costa, and C. Capela: Procedia Struct Integrity, 2019, vol. 17, pp. 562–67.

    Article  Google Scholar 

  17. A.M. Fekry: Electrochim. Acta, 2009, vol. 54, pp. 3480–89.

    Article  CAS  Google Scholar 

  18. J. Soltis: Corrosion Sci., 2015, vol. 90, pp. 5–22.

    Article  CAS  Google Scholar 

  19. D.I. Seo and J.B. Lee: Corros Sci., 2020, vol. 173, 108789.

    Article  CAS  Google Scholar 

  20. M. Nabhani, R.S. Razavi, and M. Barekat: Eng. Fail. Anal., 2019, vol. 97, pp. 234–41.

    Article  CAS  Google Scholar 

  21. J.S. Jesus, L.P. Borrego, J.A.M. Ferreira, J.D. Costa, and C. Capela: Eng. Fail. Anal., 2020, vol. 118, 104852.

    Article  CAS  Google Scholar 

  22. Y. Zhao, Y. Liu, X. Gai, Y. Bai, T. Zhang, D. Xu, and F. Wang: Corrosion, 2021, vol. 77(8), pp. 853–65.

    Article  Google Scholar 

  23. J.L. Milner, F.A. Farha, C. Bunget, T. Kurfess, and V.H. Hammond: Mater. Sci. Eng. A, 2013, vol. 561, pp. 109–17.

    Article  CAS  Google Scholar 

  24. M. Seifi, A. Salem, D. Satko, J. Shaffer, and J.J. Lewandowski: Int. J. Fatigue, 2017, vol. 94, pp. 263–87.

    Article  CAS  Google Scholar 

  25. ASTM International: Standard test methods for determining average grain size E112, ASTM International, West Conshohocken, PA, 2004.

  26. S.J. Ahn, D.H. Jeong, Y.N. Kwon, M. Goto, H.K. Sung, and S.S. Kim: Int. J. Fatigue, 2018, vol. 111, pp. 186–95.

    Article  CAS  Google Scholar 

  27. ASTM International: Standard test method for measurement of fatigue crack growth rates E647, ASTM International, West Conshohocken, PA, 2002.

  28. Y.B. Yu, S.S. Kim, Y.S. Lee, and J.H. Lee: Met. Mater. Trans. A, 2002, vol. 33, pp. 1399–12.

    Article  Google Scholar 

  29. C. Li, Z.Y. Liu, X.Y. Fang, and Y.B. Guo: Procedia CIRP, 2018, vol. 71, pp. 348–53.

    Article  Google Scholar 

  30. M. Shiomi, K. Osakada, K. Nakamura, T. Yamashita, and F. Abe: CIRP Ann., 2004, vol. 53, pp. 195–98.

    Article  Google Scholar 

  31. A.E. Davis, J.R. Kennedy, J. Ding, and P.B. Prangnell: Mater. Charact., 2020, vol. 163, 110298.

    Article  CAS  Google Scholar 

  32. S.J. Ann, J.H. Park, D.H. Jeong, H.K. Sung, Y.N. Sung, and S.S. Kim: Met. Mater. Int., 2018, vol. 24, pp. 327–36.

    Article  Google Scholar 

  33. Y. Bai, X. Gai, L.C. Zhang, Y. Liu, Y. Hao, X. Zhang, R. Yang, and Y. Gao: Corrosion Sci., 2017, vol. 123, pp. 289–96.

    Article  CAS  Google Scholar 

  34. M. Atapour, A. Pilchak, G.S. Frankel, J.C. Williams, M.H. Fathi, and M. Shamanian: Corrosion, 2010, vol. 66, pp. 065004-1–65009.

    Article  Google Scholar 

  35. D.H. Jung, J.K. Kwon, N.S. Woo, Y.J. Kim, M. Goto, and S.S. Kim: Metall. Mater. Trans. A, 2014, vol. 45, pp. 654–62.

    Article  CAS  Google Scholar 

  36. B. Holper, H. Mayer, A.K. Vasudevan, and S.E. Stanzl-Tschegg: Int. J. Fatigue, 2003, vol. 25, pp. 397–411.

    Article  CAS  Google Scholar 

  37. K. Tanaka and S. Matsuoka: Int. J. Fracture, 1977, vol. 13, pp. 563–83.

    Article  CAS  Google Scholar 

  38. A. Hartman and J. Schijve: Eng. Fract. Mech., 1970, vol. 1, pp. 615–31.

    Article  CAS  Google Scholar 

  39. M.A. Wahab and V. Raghuram: IMECE, 2013, vol. 14, pp. 1–0.

    Google Scholar 

  40. P. Paris and F. Erdogan: J. Basic Eng., 1963, vol. 85, pp. 528–33.

    Article  CAS  Google Scholar 

  41. N. Nanninga, S.Y. Levy, and C. White: J. Res. Natl. Inst. Stand. Technol., 2010, vol. 115, pp. 437–52.

    Article  CAS  Google Scholar 

  42. Y. Kondo, M. Kubota, and K. Shimada: Eng. Fract. Mech., 2010, vol. 77, pp. 1963–74.

    Article  Google Scholar 

  43. Y. Ro, S.R. Agnew, and R.P. Gangloff: Metall. Mater. Trans. A, 2008, vol. 39, pp. 1449–65.

    Article  Google Scholar 

  44. D.H. Jeong, Y.N. Kwon, M. Goto, and S.S. Kim: Int. J. Mech. Mater. Eng., 2017, vol. 12, pp. 1–0.

    Article  CAS  Google Scholar 

  45. S. Shrestha, J.E. Rassi, M. Kannan, and G. Morscher: Mater. Sci. Eng. A, 2021, vol. 823, 141701.

    Article  CAS  Google Scholar 

  46. S.S. Kim, D.H. Jeong, and H.K. Sung: Met. Mater. Int., 2018, vol. 24, pp. 1–4.

    Article  CAS  Google Scholar 

  47. S.M. Kim, H.S. Choi, J.H. Lee, and S.S. Kim: Int. J. Fatigue, 2020, vol. 140, 105802.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Industrial Technology Innovation Program (20002700) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea). This work was also supported by the Industrial Technology Innovation Program (20009993) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jung Gi Kim or Sangshik Kim.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, H., Kim, J.G., Lee, J. et al. Environment-Assisted Fatigue Crack Propagation (EAFCP) Behavior of Ti64 Alloy Fabricated by Direct Energy Deposition (DED) Process. Metall Mater Trans A 53, 3604–3614 (2022). https://doi.org/10.1007/s11661-022-06765-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-022-06765-4

Navigation