Skip to main content
Log in

Simulation, modeling, and crystal growth of Cd0.9Zn0.1Te for nuclear spectrometers

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

An Erratum to this article was published on 07 October 2008

Abstract

High-quality, large (10 cm long and 2.5 cm diameter), nuclear spectrometer grade Cd0.9Zn0.1Te (CZT) single crystals have been grown by a controlled vertical Bridgman technique using in-house zone refined precursor materials (Cd, Zn, and Te). A state-of-the-art computer model, multizone adaptive scheme for transport and phase-change processes (MASTRAP), is used to model heat and mass transfer in the Bridgman growth system and to predict the stress distribution in the as-grown CZT crystal and optimize the thermal profile. The model accounts for heat transfer in the multiphase system, convection in the melt, and interface dynamics. The grown semi-insulating (SI) CZT crystals have demonstrated promising results for high-resolution room-temperature radiation detectors due to their high dark resistivity (ρ≈2.8 × 1011 Θ cm), good charge-transport properties [electron and hole mobility-life-time product, μτe≈(2–5)×10−3 and μτh≈(3–5)×10−5 respectively, and low cost of production. Spectroscopic ellipsometry and optical transmission measurements were carried out on the grown CZT crystals using two-modulator generalized ellipsometry (2-MGE). The refractive index n and extinction coefficient k were determined by mathematically eliminating the ∼3-nm surface roughness layer. Nuclear detection measurements on the single-element CZT detectors with 241Am and 137Cs clearly detected 59.6 and 662 keV energies with energy resolution (FWHM) of 2.4 keV (4.0%) and 9.2 keV (1.4%), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.U. Egarievwe, K.-T. Chen, A. Burger, R.B. James, and M. Lisse, J. X-Ray Sci. Technol. 6, 309 (1996).

    Article  Google Scholar 

  2. D.S. McGregor, Z. He, H.A. Seifert, D.K. Wehe, and R.A. Rojeski, Appl. Phys. Lett. 72, 792 (1998).

    Article  CAS  Google Scholar 

  3. W.J. McNeil, D.S. McGregor, A.E. Bolotnikov, G.W. Wright, and R.B. James, Appl. Phys. Lett. 84, 1988 (2004).

    Article  CAS  Google Scholar 

  4. H.H. Barrett, J.D. Eskin, and H.B. Barber, Phys. Rev. Lett. 75, 156 (1995).

    Article  CAS  Google Scholar 

  5. P.N. Luke, Appl. Phys. Lett. 65, 2884 (1994).

    Article  CAS  Google Scholar 

  6. R.B. James, T.E. Schlesinger, J. Lund, and M. Schieber, in Semiconductors for Room Temperature Nuclear Detector Applications (New York: Academic Press, 1995), Vol. 43, p. 334.

    Google Scholar 

  7. A. Burger, H. Chen, K. Chattopadhyay, J.O. Ndap, S.U. Egarievwe, and R.B. James, SPIE 3446, 154 (1998).

    Article  CAS  Google Scholar 

  8. S. Sen, H.L. Hettich, D.R. Rhiger, S.L. Price, M.C. Currie, R.P. Ginn, and E.O. McLean, J. Electron. Mater. 28, 718 (1999).

    Article  CAS  Google Scholar 

  9. H. Krawczynski, I. Jung, J. Perkins, A. Burger, and M. Groza, SPIE 5540, 1 (2004).

    Article  Google Scholar 

  10. J.P. Garandet, J.J. Favier, and D. Camel, Handbook of Crystal Growth, Vol. 2B: Growth Mechanism and Dynamics (Amsterdam: Elsevier Science, 1994).

    Google Scholar 

  11. H. Zhang, L.L. Zheng, V. Prasad, and D.J. Larson, Jr., J. Heat Transfer 120, 865 (1998).

    CAS  Google Scholar 

  12. A. Tanaka, Y. Masa, S. Seto, and T. Kawasaki, J. Cryst. Growth 94, 166 (1989).

    Article  CAS  Google Scholar 

  13. G.E. Jellison, Jr., and F.A. Modine, Appl. Opt. 36, 8184 (1997).

    Article  CAS  Google Scholar 

  14. G.E. Jellison, Jr., and F.A. Modine, Appl. Opt. 36, 8190 (1997).

    CAS  Google Scholar 

  15. E.D. Palik, in Handbook of Optical Constants of Solids (New York: Academic Press, 1985), p. 409.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s11664-008-0450-3.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mandal, K.C., Kang, S.H., Choi, M. et al. Simulation, modeling, and crystal growth of Cd0.9Zn0.1Te for nuclear spectrometers. J. Electron. Mater. 35, 1251–1256 (2006). https://doi.org/10.1007/s11664-006-0250-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-006-0250-6

Key words

Navigation