Skip to main content
Log in

Effect of Inverse Doped Surface Layer in Schottky Barrier Modification: A Numerical Study

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Poisson’s equation and the drift–diffusion equations are used to simulate the current–voltage characteristics of a Schottky diode with an inverse doped surface layer. The potential inside the bulk semiconductor near the metal–semiconductor contact is estimated by simultaneously solving these equations, and then current as a function of bias through the Schottky diode is calculated. The Schottky diode parameters are extracted by fitting of simulated data to the thermionic emission diffusion equation. The simulation is carried out for various inverse layer thicknesses and doping concentrations. The obtained diode parameters are analyzed to study the effect of the inverse layer thickness and doping concentration on Schottky diode modification and its behavior at low temperatures. It is shown that an increase in the inverse layer thickness and doping concentration leads to Schottky barrier height enhancement and a change in the ideality factor. The temperature dependences of the Schottky barrier height and ideality factor are also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Shannon, Appl. Phys. Lett. 24, 368 (1974).

    Article  Google Scholar 

  2. P. Kordos, M. Marso, R. Meyer, and H. Luth, J. Appl. Phys. 72, 2347 (1992).

    Article  CAS  Google Scholar 

  3. R. Nawaz, M. Elliott, S.P. Wilks, R.H. Williams, S.W. Bland, and J.I. Davies, Appl. Surf. Sci. 123–124, 467 (1998).

    Article  Google Scholar 

  4. J. Osvald, Phys. Status Solidi C 3, 928 (2003).

    Google Scholar 

  5. S.M. Sze, Physics of Semiconductor Devices, 2nd ed. (New York: Wiley, 2002).

    Google Scholar 

  6. B.G. Streetman, Solid State Electronic Devices, 2nd ed. (Englewood Cliffs: Prentice-Hall, 1986).

    Google Scholar 

  7. J. Osvald, J. Appl. Phys. 85, 1935 (1999).

    Article  CAS  Google Scholar 

  8. D. Mayergoyz, J. Appl. Phys. 59, 195 (1986).

    Article  CAS  Google Scholar 

  9. C.E. Korman and I.D. Mayergoyz, J. Appl. Phys. 68, 1324 (1990).

    Article  Google Scholar 

  10. H.K. Gummel, IEEE Trans. Electron Dev. 11, 455 (1964).

    Article  Google Scholar 

  11. S. Selberherr, Analysis and Simulation of Semiconductor Devices (New York: Springer, 1984).

    Book  Google Scholar 

  12. E.H. Rhoderick, Metal-Semiconductor Contacts, 2nd ed. (Oxford: Clarendon, 1978).

    Google Scholar 

  13. S. Chand, P. Kaushal, and J. Osvald, Int. J. Electron. doi:10.1080/00207217.2012.720946.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhash Chand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chand, S., Kaushal, P. & Osvald, J. Effect of Inverse Doped Surface Layer in Schottky Barrier Modification: A Numerical Study. J. Electron. Mater. 41, 3387–3392 (2012). https://doi.org/10.1007/s11664-012-2234-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-012-2234-z

Keywords

Navigation