Skip to main content

Advertisement

Log in

Chemical Stability of (Ag,Cu)2Se: a Historical Overview

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Recent work on Cu2−x Se has caused strong interest in this material due to its high reported peak zT (1.5) and the reduction of thermal conductivity through the mechanism of liquid-like suppression of heat capacity. In the 1960s, 3M patented Cu1.97Ag0.03Se as “TPM-217.” Over the following decade it was tested and developed by the 3M Corporation, at the National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory, Teledyne Energy Systems, and the General Atomics Corporation for use as a next-generation thermoelectric material. During these tests, extreme problems with material loss through Se vaporization and chemical reactions between the material and the device contacts were found. These problems were especially severe while operating under conditions of high \( iL/A. \) As a result, the material system was abandoned. The results of these reports are discussed. A simple test of degradation of Cu2Se under conditions of applied current and thermal gradient was performed and showed results compatible with the work done by General Atomics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Horvatic and Z. Vucic, Solid State Ionics 61, 117 (1984).

    Article  Google Scholar 

  2. V.A. Chatov, T.P. Iorga, and P.N. Inglizyan, Sov. Phys. Semicond. 14, 474 (1980).

    Google Scholar 

  3. J.B. Boyce and B.A. Huberman, Phys. Rep. 51, 189 (1979).

    Article  CAS  Google Scholar 

  4. K. Trachenko, Phys. Rev. B 78, 104201 (2008).

    Article  Google Scholar 

  5. H. Liu, X. Shi, F. Xu, L. Zhang, W. Zhang, L. Chen, Q. Li, C. Uher, T. Day, and G.J. Snyder, Nat. Mater. 11, 422 (2012).

    Article  Google Scholar 

  6. E.F.J. Hampl, Thermoelectric materials evaluation program. Quarterly technical task report No. 39 (Report No. MMM–2473-3421972) (DOE, 1972) doi: 10.2172/4562245.

  7. E.F.J. Hampl, Thermoelectric materials evaluation program. Quarterly technical task report No. 46. [Minnesota Mining and Manufacturing Company, Technical Ceramic Products Div., St. Paul, 10/1 to 12/31/1975], (Report No. MMM-2473-0422) (DOE, 1976) doi: 10.2172/5311720.

  8. E.F.J. Hampl, J.D. Hinderman, W.C. Mitchell, R.S. Reylek, and D.A. Wald, IEEE Trans. Aerosp. Electron. Syst. 11, 952 (1975).

    Google Scholar 

  9. J.D. Hinderman, Thermoelectric Materials Evaluation Program. Annual technical report for fiscal year 1979 (Report No. MMM-2331-0642) (DOE, 1979) doi: 10.2172/5741759.

  10. J.D. Hinderman, Thermoelectric materials evaluation program. Technical summary report. (Report No. MMM-2331-0602) (DOE, 1979) doi: 10.2172/5434752.

  11. 3M Corporation. Program to design an advanced technology thermoelectric module for a 2 KW power system and to fabricate and test a heat pipe/thermoelectric module (Report No. TID/SNM—27) (DOE, 1970) doi: 10.2172/4209954.

  12. J.D. Hinderman, SIG Galileo final converter. Technical summary report. (Report No. DOE/ET/33008-1) (DOE 1979).

  13. N.B. Elsner, J. Chin and H.G. Staley, Radioisotope space power generator annual report, July 1, 1974June 30, 1975. [TPM-217 P-type material and SiGe technology] (Report No. GA-A-140161976) (DOE, 1975) doi: 10.2172/4178631.

  14. N.B. Elsner, J. Chin, H.G. Staley, J.C. Bass, E.J. Steeger, P.K. Gantzel and J.M. Neill, Radioisotope space power generator annual report for the period October 1, 1976-September 30, 1978, (Report No. GA-A-15683) (DOE, 1980) doi: 10.2172/6891182.

  15. N.B. Elsner, J. Chin, G.H. Reynolds, J.H. Norman, J.C. Bass, H.G. Staley, Isotec Final Report (Report No. GA-A-16584) (DOE, 1981) doi: 10.2172/5437033.

  16. N.B. Elsner and J. Chin, Radioisotope space power generator. Annual report for the period July 1, 1973June 30, 1974 (Report no. GA-A—13426) (DOE, 1975) doi: 10.2172/4178631

  17. G. Stapfer and L. Garvey, Progress report No. 29 for a program of thermoelectric generator testing and RTG degradation mechanisms evaluation (Report no. DOE/ET/33003-T2) (DOE, 1979) doi: 10.2172/6210722.

  18. G. Stapfer and V.C. Truscello, Development of the data base for a degradation model of a selenide RTG (Report no. 19770066000) (NASA JPL, 1977).

  19. G. Stapfer, Copper-selenide system, P-Type TPM-217 (Report no. DOE/ET/33003-T5) (DOE, 1977).

  20. A. Lockwood and G. Stapfer, Thermoelectric generator testing and RTG degradation mechanisms evaluation. Progress report No. 33 (Report no. SAN-0959-T2) (DOE, 1979) doi: 10.2172/5531078.

  21. Teledyne Energy Systems, Selenide isotope generator for the Galileo Mission. Program final report (Report no. TES-33009-46) (DOE, 1979) doi: 10.2172/5928964.

  22. Z. Vučić, O. Milat, V. Horvatić, and Z. Ogorelec, Phys. Rev. B 24, 5398 (1981).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. Brown.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, D.R., Day, T., Caillat, T. et al. Chemical Stability of (Ag,Cu)2Se: a Historical Overview. J. Electron. Mater. 42, 2014–2019 (2013). https://doi.org/10.1007/s11664-013-2506-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-013-2506-2

Keywords

Navigation