Skip to main content
Log in

Dielectric Coating Thermal Stabilization During GaAs-Based Laser Fabrication for Improved Device Yield

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The quality and yield of GaAs-based ridge waveguide devices fabricated at MIT Lincoln Laboratory were negatively impacted by the random lot-to-lot appearance of blisters in the front-side contact metal. The blisters signaled compromised adhesion between the front-side contact metal, underlying SiO2 dielectric coating, and semiconductor surface. A thermal-anneal procedure developed for the fabrication of GaAs slab coupled optical waveguide (SCOW) ridge waveguide devices stabilizes the SiO2 dielectric coating by means of outgassing and stress reduction. This process eliminates a primary source of adhesion loss, as well as blister generation, and thereby significantly improves device yield. Stoney’s equation was used to analyze stress-induced bow in device wafers fabricated using this stabilization procedure. This analysis suggests that changes in wafer bow contribute to the incidence of metal blisters in SCOW devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Chann, R.K. Huang, L.J. Missaggia, C.T. Harris, Z.L. Liau, A.K. Goyal, J.P. Donnelly, T.Y. Fan, A. Sanchez-Rubio, and G.W. Turner, Opt. Lett. 30, 2104 (2005).

    Article  Google Scholar 

  2. S.M. Redmond, K.J. Creedon, J.E. Kansky, S.J. Augst, L.J. Missaggia, M.K. Connors, R.K. Huang, B. Chann, T.Y. Fan, G.W. Turner, and A. Sanchez-Rubio, Opt. Lett. 36, 999 (2011).

    Article  Google Scholar 

  3. J.T. Gopinath, B. Chann, R.K. Huang, C. Harris, J.J. Plant, L. Missaggia, J.P. Donnelly, P.W. Juodawlkis, and D.J. Ripin, IEEE Photonic Technol. Lett. 19, 937 (2007).

    Article  Google Scholar 

  4. J. Klamkin, R.K. Huang, J.J. Plant, M.K. Connors, L.J. Missaggia, W. Loh, G.M. Smith, K.G. Ray, F.J. O’Donnell, J.P. Donnelly, and P.W. Juodawlkis, IEEE Photonic Technol. Lett. 46, 522 (2010).

    Google Scholar 

  5. K. Anglin, K. Creedon, A. Hanninen, M.K. Connors, L.J. Missaggia, J. Porter, G.W. Turner, A. Sanchez-Rubio, W.D. Goodhue, and R.B. Swint, CLEO:2013 OSA (2013)

  6. J.N. Walpole, J.P. Donnelly, P.J. Taylor, L.J. Missaggia, C.T. Harris, R.J. Bailey, A. Napoleone, S.H. Groves, S.R. Chinn, R. Huang, and J. Plant, IEEE Photonic Technol. Lett. 14, 756 (2002).

    Article  Google Scholar 

  7. A.G. Baca and C.I.H. Ashby, Fabrication of GaAs Devices (London: The Institution of Electrical Engineers, 2005), pp. 77–114.

    Book  Google Scholar 

  8. J. Yota, Electron. Soc. Trans. 19, 495 (2009).

    Google Scholar 

  9. R. Charavel, B. Olbrechts, and J.-P. Raskin, Proc. SPIE 5116, 596 (2003).

    Article  Google Scholar 

  10. Y. Park, J.K. Lee, I. Jung, and J.-Y. Lee, Integr. Ferroelectr. 25, 331 (1999).

    Article  Google Scholar 

  11. F. Iacona, G. Ceriola, and F. La Via, Mater. Sci. Semicond. Proc. 4, 43 (2001).

    Article  Google Scholar 

  12. M.I. Alayo and I. Pereyra, Braz. J. Phys. 27, 146 (1997).

    Google Scholar 

  13. S.M. Cho, Y.T. Kim, D.H. Yoon, J.M. Kim, H.D. Yoon, Y.M. Im, and G.E. Jang, J. Korean Phys. Soc. 42, 947 (2003).

    Google Scholar 

  14. B. Olbrechts and J.-P. Raskin, Microelectron. Eng. 87, 2178 (2010).

    Article  Google Scholar 

  15. C.E. Viana, N.I. Morimoto, and O. Bonnaud, Microelectron. Reliab. 40, 613 (2000).

    Article  Google Scholar 

  16. O. Moutanabbir, S. Christiansen, S. Senz, R. Scholz, M. Petzold, and U. Gösele, Electron. Soc. Trans. 16, 251 (2008).

    Google Scholar 

  17. M.K. Connors, L.J. Missaggia, W.S. Spencer, and G.W. Turner, J. Vac. Sci. Technol. B 32, 021207 (2014).

    Article  Google Scholar 

  18. M.K. Connors, J.J. Plant, K.G. Ray, and G.W. Turner, J. Vac. Sci. Technol. B 31, 021207 (2013).

    Article  Google Scholar 

  19. K.E. Mattsson, J. Appl. Phys. 77, 6616 (1995).

    Article  Google Scholar 

  20. A. Tarraf, J. Daleiden, S. Irmer, D. Prasai, and H. Hillmer, J. Micromech. Microeng. 14, 317 (2004).

    Article  Google Scholar 

  21. G. Franceschinis, Surface Profilometry as a tool to Measure Thin Film Stress, A Practical Approach. (Microelectronics Engineering Department, R.I.T., 2005), http://people.rit. edu/lffeee/stress_measurement.pdf. Accessed 10 Oct 2014

Download references

Acknowledgements

The authors wish to thank T.Y. Fan for editorial review and guidance, Michael Sheehan and William Spencer for fabrication support, and Donna-Ruth Yost for providing thermal SiO2 test wafers. This work is sponsored by the Department of the Air Force under Air Force Contract No. FA8721-05-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael K. Connors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Connors, M.K., Millsapp, J.E. & Turner, G.W. Dielectric Coating Thermal Stabilization During GaAs-Based Laser Fabrication for Improved Device Yield. J. Electron. Mater. 45, 2750–2756 (2016). https://doi.org/10.1007/s11664-016-4430-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-016-4430-8

Keywords

Navigation