Skip to main content
Log in

Carbon Nanotube Assisted Enhancement of the Magneto-Optical Kerr Signal in Nickel Thin Films

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this paper, the effect of carbon nanotubes (CNTs) acting as a covering layer on the [Glass/Ni] sample was experimentally investigated. To this end, a 48 nm thick Ni thin film was initially deposited on the glass substrate using a thermal evaporation method. Afterward, a spin-coating method was employed to deposit a thin layer of CNTs on the Ni thin film, thereby forming the [Glass/Ni/CNT] structure. Compared to [Glass/Ni] samples, the presence of CNTs led to 100% and 180% enhancement in the longitudinal Kerr signal of spin-coated samples. Field emission scanning electron microscopy, energy-dispersive x-ray spectroscopy, UV–Vis spectra and vibrating-sample magnetometer analyses were employed to characterize and investigate the morphology, elemental analysis, and optical and magnetic characteristics of the resulting structures. As a covering layer, the CNTs enhanced the absorption of light in the UV–visible wavelength range while also amplifying the interaction of light with the Ni layer without seriously changing other magnetic properties of the structure. Accordingly, using a simple approach, the Kerr signal was amplified more than three times compared to that of an uncovered sample, providing useful applications for magnetic sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Iijima, Nature 354, 56 (1991).

    Article  CAS  Google Scholar 

  2. P.G. Collins and P. Avouris, Sci. Am. 283, 62 (2000).

    Article  CAS  Google Scholar 

  3. G.A. Rance, D.H. Marsh, R.J. Nicholas, and A.N. Khlobystov, Chem. Phys. Lett. 493, 19 (2010).

    Article  CAS  Google Scholar 

  4. Q. Jiang, X. Wang, Y. Zhu, D. Hui, and Y. Qiu, Compos. Part. B Eng. 56, 408 (2014).

    Article  CAS  Google Scholar 

  5. J. Che, T. Cagin, and W.A. Goddard III, Nanotechnology 11, 65 (2000).

    Article  CAS  Google Scholar 

  6. J.C. Lasjaunias, C R Phys. 4, 1047 (2003).

    Article  CAS  Google Scholar 

  7. J.P. Salvetat, J.M. Bonard, N.H. Thomson, A.J. Kulik, L. Forro, W. Benoit, and L. Zuppiroli, Appl. Phys. A 69, 255 (1999).

    Article  CAS  Google Scholar 

  8. B.I. Yakobson and P. Avouris, Carbon Nanotubes, ed. M.S. Dresselhaus, G. Dresselhaus, and Ph. Avouris (Springer, Berlin, 2001), p. 287.

  9. J. Oh, Y.W. Chang, H.J. Kim, S. Yoo, D.J. Kim, S. Im, Y.J. Park, D. Kim, and K.-H. Yoo, Nano Lett. 10, 2755 (2010).

    Article  CAS  Google Scholar 

  10. E.G. Lee, K.M. Park, J.Y. Jeong, S.H. Lee, J.E. Baek, H.W. Lee, J.K. Jung, and B.H. Chung, Anal. Biochem. 408, 206 (2011).

    Article  CAS  Google Scholar 

  11. M. Mahjouri Samani, Y. Zhou, X. He, W. Xiong, P. Hilger, and Y. Lu, Nanotechnology 24, 035502 (2012).

    Article  Google Scholar 

  12. D. Bang, H. Awano, Y. Saito, and J. Tominaga, J. Electron. Mater. 45, 2496 (2016).

    Article  CAS  Google Scholar 

  13. M. Moradi, Z. Ayareh, and S. Mahmoodi, J. Magn. Magn. Mater. 444, 410 (2017).

    Article  CAS  Google Scholar 

  14. S.M. Hamidi, H. Normohammadi, and M.M. Tehranchi, Opt. Laser Technol. 49, 237 (2013).

    Article  CAS  Google Scholar 

  15. S. Sotiropoulou and N.A. Chaniotakis, Anal. Bioanal. Chem. 375, 103 (2003).

    Article  CAS  Google Scholar 

  16. M. Son, D. Kim, K.S. Park, S. Hong, and T.H. Park, Biosens. Bioelectron. 78, 87 (2016).

    Article  CAS  Google Scholar 

  17. L.A. Bursill, P.A. Stadelmann, J. Peng, and S. Prawer, Phys. Rev. B 49, 2882 (1994).

    Article  CAS  Google Scholar 

  18. N. Hartmann, G. Piredda, J. Berthelot, G.R. Colas des Francs, A. Bouhelier, and A. Hartschuh, Nano Lett. 12, 177 (2011).

    Article  Google Scholar 

  19. H. Peng, J. Am. Chem. Soc. 130, 42 (2008).

    Article  CAS  Google Scholar 

  20. H. Zhang, D. Wei, Y. Liu, B. Wu, L. Huang, H. Xi, J. Chen, G. Yu, H. Kajiura, and Y. Li, Small 5, 2392 (2009).

    Article  CAS  Google Scholar 

  21. C.L. Pint, Y.-Q. Xu, M. Pasquali, and R.H. Hauge, ACS Nano 2, 1871 (2008).

    Article  CAS  Google Scholar 

  22. R.C. Tenent, T.M. Barnes, J.D. Bergeson, A.J. Ferguson, B. To, L.M. Gedvilas, M.J. Heben, and J.L. Blackburn, Adv. Mater. 21, 3210 (2009).

    Article  CAS  Google Scholar 

  23. H.Z. Geng, K.K. Kim, K.P. So, Y.S. Lee, Y. Chang, and Y.H. Lee, J. Am. Chem. Soc. 129, 7758 (2007).

    Article  CAS  Google Scholar 

  24. E.Y. Jang, T.J. Kang, H.W. Im, D.W. Kim, and Y.H. Kim, Small 4, 2255 (2008).

    Article  CAS  Google Scholar 

  25. K. Ahn, D. Kim, O. Kim, and J. Nam, J. Coat. Technol. Res. 12, 855 (2015).

    Article  CAS  Google Scholar 

  26. Y. Hu, Y. Zhu, W. Zhou, H. Wang, J. Yi, S. Xin, W. He, and T. Shen, J. Coat. Technol. Res. 13, 115 (2016).

    Article  CAS  Google Scholar 

  27. T. Kitano, Y. Maeda, and T. Akasaka, Carbon 47, 3559 (2009).

    Article  CAS  Google Scholar 

  28. Z. Ayazi and A. Matin, J. Chromatogr. Sci. 54, 1841 (2016).

    CAS  Google Scholar 

  29. M.L. Geier, J.J. McMorrow, W. Xu, J. Zhu, C.H. Kim, T.J. Marks, and M.C. Hersam, Nat. Nanotechnol. 10, 944 (2015).

    Article  CAS  Google Scholar 

  30. K.J. Baeg, H.J. Jeong, S.Y. Jeong, J.T. Han, and G.-W. Lee, Curr. Appl. Phys. 17, 541 (2017).

    Article  Google Scholar 

  31. N.N. Le, E. Fribourg-Blanc, H.C.T. Phan, D.M.T. Dang, and C.M. Dang, Int. J. Nanotechnol. 15, 3 (2018).

    Article  Google Scholar 

  32. B. Esmailzadeh and M. Moradi, J. Supercond. Novel Magn. 31, 1483 (2018).

  33. M. Moradi, S.M. Mohseni, S. Mahmoodi, D. Rezvani, N. Ansari, S. Chung, and J. Akerman, Electron. Mater. Lett. 11, 440 (2015).

    Article  CAS  Google Scholar 

  34. S. Mahmoodi, M. Moradi, and S. Mohseni, J. Magn. Magn. Mater. 420, 258 (2016).

    Article  CAS  Google Scholar 

  35. J. Swerts, S. Vandezande, K. Temst, and C. Van Haesendonck, Solid State Commun. 131, 359 (2004).

    Article  CAS  Google Scholar 

  36. D. Meyners, H. Brückl, and G. Reiss, J. Appl. Phys. 93, 2676 (2003).

    Article  CAS  Google Scholar 

  37. B. Esmaeilzadeh, M. Moradi, and F. Jahantigh, J. Magn. Magn. Mater. 460, 207 (2018).

    Article  CAS  Google Scholar 

  38. M. Ghanaatshoar and M. Moradi, Opt. Eng. 50, 93801 (2011).

    Article  Google Scholar 

  39. M. Moradi and M. Ghanaatshoar, Opt. Commun. 283, 5053 (2010).

    Article  CAS  Google Scholar 

  40. S. Mahmoodi, M. Moradi, and S. Mohseni, J. Supercond. Novel Magn. 29, 1517 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrdad Moradi.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoodi, S., Moradi, M. Carbon Nanotube Assisted Enhancement of the Magneto-Optical Kerr Signal in Nickel Thin Films. J. Electron. Mater. 47, 7069–7074 (2018). https://doi.org/10.1007/s11664-018-6634-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6634-6

Keywords

Navigation