Skip to main content
Log in

Magnetic Fluid-Injected Ring-Core-Based Micro-structured Optical Fiber for Temperature Sensing in Broad Wavelength Spectrum

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A highly sensitive temperature sensor of magnetic fluid (ethanol) using a ring-core-based microstructured optical fiber (MOF) with two large elliptical air holes beside the ring core has been suggested by the finite element method. Highly sensitive magnetic fluid ethanol is injected into the ring core to improve its high sensitivity response. The maximum sensitivity response of 25,641.025 nm/RIU and 10 nm/°C are obtained for the broad operating wavelength of 6500–7000 nm where the temperature range is 10–60°C and the applied magnetic field strength range is 50–200 Oe. Various parameters such as high birefringence, coupling length, power spectrum, transmission, and loss spectra were studied and 14 modes were analyzed in our work. The proposed structure can be further modified and applied in various applications, such as magneto-optic modulators, optical fiber gyroscopes, and switches. The reported MOF structure can easily be fabricated owing to its simplified structure and easy filling of functional materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Zu, C. Chiu Chan, T. Gong, Y. Jin, W. Chang Wong, and X. Dong, Appl. Phys. Lett. 101, 241118 (2012).

    Article  Google Scholar 

  2. W. Wang, H. Zhang, B. Li, Z. Li, and Y. Miao, Opt. Fiber Technol. 50, 114 (2019).

    Article  CAS  Google Scholar 

  3. T. Liu, X. Chen, Z. Di, J. Zhang, X. Li, and J. Chen, Chin. Opt. Lett. 6, 195 (2008).

    Article  Google Scholar 

  4. P. Lu, L. Men, K. Sooley, and Q. Chen, Appl. Phys. Lett. 94, 131110 (2009).

    Article  Google Scholar 

  5. S.M. Tripathi, W.J. Bock, A. Kumar, and P. Mikulic, Opt. Lett. 38, 1666 (2013).

    Article  Google Scholar 

  6. Y. Xue, Y.S. Yu, R. Yang, C. Wang, C. Chen, J.C. Guo, X.Y. Zhang, C.C. Zhu, and H.B. Sun, Opt. Lett. 38, 1209 (2013).

    Article  Google Scholar 

  7. M.R. Rakhshani and M.A. Mansouri-Birjandi, Sens. Actuators B. 249, 168 (2017).

    Article  CAS  Google Scholar 

  8. Y. Wang, Q. Huang, W. Zhu, M. Yang, and E. Lewis, Opt. Express 26, 1910 (2018).

    Article  CAS  Google Scholar 

  9. F. Zhang, X. Xu, J. He, B. Du, and Y. Wang, Opt. Lett. 44, 2466 (2019).

    Article  CAS  Google Scholar 

  10. M.C. Large, A. Argyros, F. Cox, M.A. Van Eijkelenborg, S. Ponrathnam, N.S. Pujari, I.M. Bassett, R. Lwin, and G.W. Barton, Mol. Cryst. Liq. Cryst. 446, 219 (2006).

    Article  CAS  Google Scholar 

  11. D. Pysz, I. Kujawa, R. Stępień, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buźniak, K. Haraśny, and R. Buczyński, Bull. Pol. Acad. Sci.Tech. Sci. 62, 667 (2014).

    CAS  Google Scholar 

  12. D. Xu, H. Song, W. Wang, Y. Fan, and B. Yang, Optik Int. J. Light Electron Opt. 124, 1290 (2013).

    Article  Google Scholar 

  13. M.A. Jabin, K. Ahmed, M.J. Rana, B.K. Paul, M. Islam, D. Vigneswaran, and M.S. Uddin, IEEE Photonics J. 11, 1 (2019).

    Article  Google Scholar 

  14. Q. Liu, S. Li, H. Chen, Z. Fan, and J. Li, IEEE Photonics J. 7, 1 (2015).

    Google Scholar 

  15. Y. Lu, M.T. Wang, C.J. Hao, Z.Q. Zhao, and J.Q. Yao, IEEE Photonics J. 6, 1 (2014).

    Google Scholar 

  16. B. Gauvreau, A. Hassani, M.F. Fehri, A. Kabashin, and M. Skorobogatiy, Opt. Express 15, 11413 (2007).

    Article  CAS  Google Scholar 

  17. L. Li, L. Xia, Z. Xie, and D. Liu, Opt. Express 20, 11109 (2012).

    Article  CAS  Google Scholar 

  18. Y. Zhao, Q.L. Wu, and Y.N. Zhang, Sens. Actuators B. 258, 822 (2018).

    Article  CAS  Google Scholar 

  19. M.S. Alam, S. Akter, B.K. Paul, K. Ahmed, D. Vigneswaran, and M.N. Aktar, OSA Contin. 2, 2581 (2019).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kawsar Ahmed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullah, H., Mitu, S.A. & Ahmed, K. Magnetic Fluid-Injected Ring-Core-Based Micro-structured Optical Fiber for Temperature Sensing in Broad Wavelength Spectrum. J. Electron. Mater. 49, 4969–4976 (2020). https://doi.org/10.1007/s11664-020-08231-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08231-6

Keywords

Navigation