Skip to main content
Log in

Microstructural and Micromechanical Characteristics of Tin-Based Solders Under Self-Propagating Exothermic Reaction Heating

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this study, a rapid solder melting process has been examined through a self-propagating exothermic reaction using Al/Ni nanofoil as a localized heat source. Four kinds of tin-based solder preforms were partly melted under this process, and the thicknesses of the fusion zone in solder preforms around the Al/Ni nanofoil were experimentally analyzed. The microstructure and morphology of the fusion zone in different kinds of solder preforms were studied by metallographic analysis. In Sn42Bi58 solder, the mean grain size of Bi-rich phases in the fusion zone was finer than the original structure, and decreased from ~ 2.7 μm to ~ 0.8 μm away from the Al/Ni nanofoil. Similar trends of mean size of grains in the fusion zone were also found in the Sn, Sn-3 wt.%Ag-0.5 wt.%Cu(SAC), and SnPb solder preforms. The widths of the fusion zone in the Sn, SAC, SnPb, and SnBi solder preforms were 150 μm, 173 μm, 188 μm, and 233 μm, respectively. In addition, the nano-hardness and distribution in the fusion zones were evaluated. The results show that the value of nanohardness increased along with the decrease of distance from Al/Ni nanofoil. The average hardness and the lower and upper bounds of Sn, SnPb, SAC, and SnBi solder in the fusion zone are 0.260 (−0.045, +0.039) GPa, 0.246 (−0.059, +0.114) GPa, 0.260 (−0.014, +0.070) GPa, and 0.404 (−0.072, +0.134) GPa, respectively. The statistical significance of solder hardness is related to its alloy component, element content, and microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.-C. Lin, M. Baum, M. Haubold, J. Fromel, M. Wiemer, T. Gessner, and M. Esashi, in International Solid-State Sensors, Actuators and Microsystems Conference (2009), pp. 244–247.

  2. X. Qiu, J. Zhu, J. Oiler, C. Yu, Z. Wang, and H. Yu, J. Phys. D Appl. Phys. 42, 18 (2009).

    Google Scholar 

  3. J. Wang, E. Besnoin, O.M. Knio, and T.P. Weihs, Appl. Phys. Lett. 83, 19 (2003).

    Google Scholar 

  4. Yoosuf N. Picard and Steven M. Yalisove, Appl. Phys. Lett. 88, 14 (2006).

    Article  Google Scholar 

  5. J.-H. Peng, J. Binner, and S. Bradshaw, Mater. Sci. Technol. 18, 12 (2002).

    Article  Google Scholar 

  6. E. Grigoryan, N.G. Elistratov, D.Yu. Kovalev, A.G. Merzhanov, A.N. Nosyrev, V.I. Ponomarev, A.S. Rogachev, V.I. Khvesyuk, and P.A. Tsygankov, Dokl. Phys. Chem. 381, 1 (2001).

    Article  Google Scholar 

  7. D.P. Adams, M.A. Rodriguez, J.P. McDonald, M.M. Bai, E. Jones Jr, L. Brewer, and J.J. Moore, J. Appl. Phys. 106, 9 (2009).

    Article  Google Scholar 

  8. A.J. Gavens, D. Van Heerden, A.B. Mann, M.E. Reiss, and T.P. Weihs, J. Appl. Phys. 87, 3 (2000).

    Article  Google Scholar 

  9. U. Gösele, H. Stenzel, T. Martini, J. Steinkirchner, D. Conrad, and K. Scheerschmidt, Appl. Phys. Lett. 67, 24 (1995).

    Google Scholar 

  10. A.J. Swiston Jr., T.C. Hufnagel, and T.P. Weihs, Scr. Mater. 48, 12 (2003).

    Article  Google Scholar 

  11. A. Duckham, S.J. Spey, J. Wang, M.E. Reiss, T.P. Weihs, E. Besnoin, and O.M. Knio, J. Appl. Phys. 96, 4 (2004).

    Article  Google Scholar 

  12. J. Braeuer, J. Besser, M. Wiemer, and T. Gessner, in International Solid-State Sensors, Actuators and Microsystems Conference (2011), pp. 1332–1335.

  13. J. Zhang, F.-S. Wu, J. Zou, B. An, and H. Liu, in International Conference on Electronic Packaging Technology & High Density Packaging (2009), pp. 838–842.

  14. G.D. Theodossiadis and M.F. Zaeh, Prod. Eng. 11, 4–5 (2017).

    Google Scholar 

  15. Z. Zhou, L. Mo, H. Liu, Y.C. Chan, and F. Wu, J. Electron. Mater. 47, 12 (2018).

    Google Scholar 

  16. J. Wang, E. Besnoin, A. Duckham, S.J. Spey, M.E. Reiss, O.M. Knio, and T.P. Weihs, J. Appl. Phys. 95, 1 (2004).

    Article  Google Scholar 

  17. W. Zhu, F. Wu, B. Wang, E. Hou, P. Wang, C. Liu, and W. Xia, Microelectron. Eng. 128, 24 (2014).

    Article  CAS  Google Scholar 

  18. J. Braeuer, J. Besser, M. Wiemer, and T. Gessner, Sens. Actuators A Phys. 188, 212 (2012).

    Article  CAS  Google Scholar 

  19. B. Boettge, J. Braeuer, M. Wiemer, M. Petzold, J. Bagdahn, and T. Gessner, J. Micromech. Microeng. 20, 064018 (2010).

    Article  Google Scholar 

  20. R. Grieseler, T. Welker, J. Müller, and P. Schaaf, Phys. Status Solidi A 209, 512 (2012).

    Article  CAS  Google Scholar 

  21. C. Pascal, R. Marin-Ayral, and J. Tedenac, J. Alloys Compd. 337, 221 (2002).

    Article  CAS  Google Scholar 

  22. W.R. Osório, J.E. Spinelli, C.R.M. Afonso, L.C. Peixoto, and A. Garcia, Electrochim. Acta 56, 24 (2011).

    Google Scholar 

  23. U. Böyük and N. Maraşlı, Mater. Chem. Phys. 119, 3 (2010).

    Article  Google Scholar 

  24. G. Wei and L. Wang, in International Conference on Electronic Packaging Technology and High Density Packaging (2012), pp. 453–456.

  25. R.M. Shalaby, Cryst. Res. Technol. 45, 4 (2010).

    Article  Google Scholar 

  26. F. Ochoa, J.J. Williams, and N. Chawla, JOM 55, 6 (2003).

    Article  Google Scholar 

  27. B.J. Briscoe, L. Fiori, and E. Pelillo, J. Phys. D Appl. Phys. 31, 19 (1998).

    Article  Google Scholar 

  28. W.C. Oliver and G.M. Pharr, J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  29. H. Gao, Y. Huang, and W. Nix, Nat. Wiss. 86, 507 (1999).

    Article  CAS  Google Scholar 

  30. Y.W. Bao, W. Wang, and Y.C. Zhou, Acta Mater. 52, 18 (2004).

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support provided by the National Natural Science Foundation of China (NSFC No. 61574068, NSFC No. 61261160498), as well as two research grants on “quasi-ambient bonding (QAB)” (Ref: EP/R032203/1) and “heterogeneous integration (HI)” (Ref: EP/R004501/1) funded by EPSRC of the United Kingdom. The authors also acknowledge the support provided by the China Association for Science and Technology (No. 2018CASTQNJL55). In addition, the authors thank Huazhong University of Science and Technology Analytical and Testing Center, Hubei University of Technology Analytical and Testing Center, State Key Laboratory of Material Processing and Die & Mould Technology for SEM analysis and mechanical properties testing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengshun Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Zhang, A., Guan, X. et al. Microstructural and Micromechanical Characteristics of Tin-Based Solders Under Self-Propagating Exothermic Reaction Heating. J. Electron. Mater. 49, 6214–6222 (2020). https://doi.org/10.1007/s11664-020-08363-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08363-9

Keywords

Navigation