Skip to main content
Log in

Quantitative Analysis of Microstructural Refinement in Simulated Carburized Microstructures

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Microstructure refinement strategies in simulated carburized microstructures were evaluated because of their potential for improving the fatigue performance of case-carburized components. Commercial 52100 steel was used to simulate the high-carbon content in the case. Specimens were subjected to various thermal treatments in a quenching dilatometer. Reheating cycles to austenitizing temperatures were evaluated with respect to both prior austenite grain size (PAGS) and associated martensite and retained austenite (RA) refinement. Quantitative stereological measurements were performed to evaluate the microgeometry of plate martensite and the size distribution of RA regions. Decreasing the reheating temperature resulted in finer PAGS, and multiple reheating cycles resulted in a narrower PAGS distribution. Refinement in PAGS led to a reduction in martensite plate size and finer distribution of RA. Additionally, interrupted quenching below martensite start (MS) temperature was evaluated. This processing route results in a refinement of martensite plates and more stable RA. The stabilization of austenite may be mechanical or chemical in nature, owing to the deformation of austenite during primary transformation, or due to partitioning of carbon into austenite similar to quenching and partitioning steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H. Mohrbacher, Metallurgical Concepts for Optimized Processing and Properties of Carburizing Steel, Adv. Manuf., 2016, 4, p 105–114. https://doi.org/10.1007/s40436-016-0142-9

    Article  CAS  Google Scholar 

  2. G. Krauss, Fatigue and Fracture, in ASM Handbook.Vol.19, ASM International, pp. 680–690, (1996). https://doi.org/10.31399/asm.hb.v19.9781627081931

  3. J.P. Wise and D.K. Matlock, Bending Fatigue of Carburized Steels: A statistical Analysis of Process and Microstructural Parameters, SAE Trans., 2000, 109, p 182–191. https://doi.org/10.4271/2000-01-0611

    Article  Google Scholar 

  4. C.A. Apple and G. Krauss, Microcracking and Fatigue in a Carburized Steel, Metall. Trans., 1973, 4(5), p 1195–1200. https://doi.org/10.1007/BF02644511

    Article  CAS  Google Scholar 

  5. S.M.C. Van Bohemen and J. Sietsma, Martensite Formation in Partially and Fully Austenitic Plain Carbon Steels, Metall. Mater. Trans. A, 2009, 40(5), p 1059–1068. https://doi.org/10.1007/s11661-009-9796-2

    Article  CAS  Google Scholar 

  6. S.M.C. van Bohemen and J. Sietsma, Kinetics of Martensite Formation in Plain Carbon Steels: Critical Assessment of Possible Influence of Austenite Grain Boundaries and Autocatalysis, Mater. Sci. Technol., 2014, 30(9), p 1024–1033. https://doi.org/10.1179/1743284714Y.0000000532

    Article  CAS  Google Scholar 

  7. A.R. Entwisle, The Kinetics of Martensite Formation in Steel, Metall. Trans., 1971, 2(9), p 2395–2407. https://doi.org/10.1007/BF02814877

    Article  CAS  Google Scholar 

  8. C.H. Shih, B.L. Averbach, and M. Cohen, Some Characteristics of the Isothermal Martensitic Transformation, JOM, 1955, 7(1), p 183–187. https://doi.org/10.1007/BF03377476

    Article  CAS  Google Scholar 

  9. G.B. Olson and M. Cohen, A General Mechanism of Martensitic Nucleation: Part I. FCC → HCP and Other Martensitic Transformations, Metall. Trans. A, 1976, 7, p 1897–1904. https://doi.org/10.1007/bf02659822

    Article  Google Scholar 

  10. G.B. Olson and M. Cohen, A General Mechanism of Martensitic Nucleation: Part II. FCC → BCC and other Martensitic Transformations, Metall. Trans. A, 1976, 7, p 1905–1914. https://doi.org/10.1007/bf02659823

    Article  Google Scholar 

  11. S. Karewar, J. Sietsma, and M.J. Santofimia, Effect of Pre-existing Defects in the Parent fcc Phase on Atomistic Mechanisms During the Martensitic Transformation in pure Fe: a Molecular dynamics Study, Acta Mater., 2018, 142, p 71–81. https://doi.org/10.1016/j.actamat.2017.09.049

    Article  CAS  Google Scholar 

  12. C. Celada-Casero, J. Sietsma, and M.J. Santofimia, The Role of the Austenite Grain Size in the Martensitic Transformation in Low Carbon Steels, Mater. Des., 2019, 167, p 107625. https://doi.org/10.1016/j.matdes.2019.107625

    Article  CAS  Google Scholar 

  13. D.V. Edmonds, K. He, F.C. Rizzo, B.C. De Cooman, D.K. Matlock, and J.G. Speer, Quenching and Partitioning Martensite—A Novel Steel Heat Treatment, Mat. Sci. Eng. A, 2006, 438–440, p 25–34. https://doi.org/10.1016/j.msea.2006.02.133

    Article  CAS  Google Scholar 

  14. P.H. Chang, P.G. Winchell, and G.L. Liedl, Quantitative Geometric Characterization of High Carbon Martensite, Metall. Trans. A, 1983, 14(1), p 163–173. https://doi.org/10.1007/BF02651612

    Article  CAS  Google Scholar 

  15. P.R. Rios and J.R.C. Guimarães, Microstructural Path Analysis of Athermal Martensite, Scr. Mater., 2007, 57(12), p 1105–1108. https://doi.org/10.1016/J.SCRIPTAMAT.2007.08.019

    Article  CAS  Google Scholar 

  16. J.R.C. Guimarães and P.R. Rios, Spatial Aspects of Martensite, Metall. Mater. Trans. A, 2012, 43(7), p 2218–2224. https://doi.org/10.1007/s11661-012-1102-z

    Article  CAS  Google Scholar 

  17. J.R.C. Guimarães and J.C. Gomes, A Metallographic Study of the Influence of the Austenite Grain Size on Martensite Kinetics, Acta Metall., 1978, 26(10), p 1591–1596. https://doi.org/10.1016/0001-6160(78)90068-8

    Article  Google Scholar 

  18. E.E. Underwood, Quantitative Stereology for Microstructural Analysis, Microstructural analysis, Springer, Boston, 1973, p 35–66 https://doi.org/10.1007/978-1-4615-8693-7_3

    Chapter  Google Scholar 

  19. R.T. DeHoff and F.N. Rhines, Quantitative MIcroscopy, McGraw-Hill, New York, 1968

    Google Scholar 

  20. J. Takahashi and H. Suito, Evaluation of the Accuracy of the Three-dimensional Size Distribution Estimated from the Schwartz-Saltykov Method, Metall. Mater. Trans. A, 2003, 34, p 171–181. https://doi.org/10.1007/s11661-003-0218-6

    Article  Google Scholar 

  21. J.C. Fisher, J.H. Hollomon, and D. Turnbull, Kinetics of the Austenite → Martensite Transformation, JOM, 1949, 1(10), p 691–700

    Article  CAS  Google Scholar 

  22. J.R.C. Guimarães, Athermal Martensite: Genesis of Microstructure and Transformation Curves, Mater. Sci. Eng., A, 2008, 476(1–2), p 106–111. https://doi.org/10.1016/j.msea.2007.04.068

    Article  CAS  Google Scholar 

  23. P.H. Chang, H. Rubin, P.G. Winchell, and G.L. Liedl, The Determination of Size Distribution of Martensite Plates by Kernel Estimation, Scr. Metall., 1982, 16(5), p 531–536. https://doi.org/10.1016/0036-9748(82)90264-2

    Article  CAS  Google Scholar 

  24. I.B. Timokhina, P.D. Hodgson, and E.V. Pereloma, Effect of Microstructure on the Stability of Retained Austenite in Transformation-induced-plasticity Steels, Metall. Mater. Trans. A, 2004, 35(8), p 2331–2341. https://doi.org/10.1007/s11661-006-0213-9

    Article  Google Scholar 

  25. J.H. Ryu, D.-I. Kim, H.S. Kim, H.K.D.H. Bhadeshia, and D.-W. Suh, Strain Partitioning and Mechanical Stability of Retained Austenite, Scr. Mater., 2010, 63(3), p 297–299. https://doi.org/10.1016/J.SCRIPTAMAT.2010.04.020

    Article  CAS  Google Scholar 

  26. S. Zhang and K.O. Findley, Quantitative Assessment of the Effects of Microstructure on the Stability of Retained Austenite in TRIP Steels, Acta Mater., 2013, 61(6), p 1895–1903. https://doi.org/10.1016/j.actamat.2012.12.010

    Article  CAS  Google Scholar 

  27. S. Chatterjee and H.K.D.H. Bhadeshia, Transformation Induced Plasticity Assisted Steels: Stress or Strain Affected Martensitic Transformation, Mater. Sci. Technol., 2007, 23(9), p 1101–1104

    Article  CAS  Google Scholar 

  28. E.J. Seo, L. Cho, Y. Estrin, and B.C. De Cooman, Microstructure-Mechanical Properties Relationships for Quenching and Partitioning (Q&P) Processed Steel, Acta Mater., 2016, 113, p 124–139. https://doi.org/10.1016/j.actamat.2016.04.048

    Article  CAS  Google Scholar 

  29. T. Man, T. Ohmura, and Y. Tomota, Mechanical Behavior of Individual Retained Austenite Grains in High Carbon Quenched-tempered Steel, ISIJ Int., 2019, 59(3), p 559–566. https://doi.org/10.2355/isijinternational.ISIJINT-2018-620

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research project is being supported by NSF-CMMI award number 1728007. The authors also gratefully acknowledge the support of the sponsors of Advanced Steel Processing and Products Research Center at Colorado School of Mines, especially TimkenSteel, for providing the raw material for this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Agnani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agnani, M., DeNonno, O.L., Findley, K.O. et al. Quantitative Analysis of Microstructural Refinement in Simulated Carburized Microstructures. J. of Materi Eng and Perform 29, 3551–3559 (2020). https://doi.org/10.1007/s11665-020-04714-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04714-z

Keywords

Navigation