Skip to main content
Log in

Fabrication Technique and Characterization of Aluminum Alloy-Based Porous Composite Infiltrated with Babbitt Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Aluminum alloy-based porous composite skeleton infiltrated with babbitt alloy (infiltrated skeleton) is investigated in this paper. The obtained material is characterized with respect to its microstructure, compressive stress–strain curves and tribological parameters such as linear wear and volume loss. The composite skeleton is produced by replication method with salt (NaCl) particles as space holder and Al2O3 particles as reinforcing phase. This salt preform is infiltrated with Al alloy and afterward the salt particles are leached to obtain composite skeleton. Then, the skeleton is infiltrated with babbitt alloy by employing squeeze casting technique. The structural, mechanical and tribological properties of the obtained composite are compared with nominally nonporous babbitt. It is concluded that the infiltrated skeleton possesses superior properties in comparison with the babbitt in terms of compressive behavior and tribological properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R. Dasgupta, Aluminium Alloy-Based Metal Matrix Composites: A Potential Material for Wear Resistant Applications, Int. Sch. Res. Netw. ISRN Metall., 2012, https://doi.org/10.5402/2012/594573

    Article  Google Scholar 

  2. M.K. Surappa, Aluminium Metal Matrix Composites: Challenges and Opportunities, Sadhana, 2003, 28(1–2), p 319–334. https://doi.org/10.1007/BF02717141

    Article  CAS  Google Scholar 

  3. J.F. Despois, A. Marmottant, Y. Conde, R. Goodall, L. Salvo, C. San Marchi, and A. Mortensen, Microstructural Tailoring of Open-Pore Microcellular Aluminium by Replication Processing, Adv. Struct. Funct. Mater. Des., 2006, 512, p 281–288. https://doi.org/10.4028/www.scientific.net/MSF.512.281

    Article  CAS  Google Scholar 

  4. Y. Conde, J.F. Despois, R. Goodall, A. Marmottant, L. Salvo, C. San Marchi, and A. Mortensen, Replication (a.k.a. Space-holder) Processing of Highly Porous Materials, Adv. Eng. Mater., 2006, 8, p 795–803. https://doi.org/10.1002/adem.200600077

    Article  CAS  Google Scholar 

  5. A.K. Sharma, R. Bhandari, A. Aherwar, R. Rimašauskienė, and C. Pinca-Bretotean, A Study of Advancement in Application Opportunities of Aluminum Metal Matrix Composites, Today Proc., Mater, 2020, https://doi.org/10.1016/j.matpr.2020.02.516

    Book  Google Scholar 

  6. A. Macke, B.F. Schultz, and P. Rohatgi, Metal Matrix Composites—Offer the Automotive Industry an Opportunity to Reduce Vehicle Weight, Improve Performance, Adv. Mater. Process., 2012, 170(3), p 19–23

    CAS  Google Scholar 

  7. S.A.M. Krishna, T.N. Shridhar, and L. Krishnamurthy, Research Significance, Applications and Fabrication of Hybrid Metal Matrix Composite, Int. J. Innov. Sci. Eng. Technol., 2015, 2, p 227–237

    Google Scholar 

  8. L.G. Korshunov, N.I. Noskova, A.V. Korznikov, N.L. Chernenko, and N.F. Vil Danova, Effect of Severe Plastic Deformation on the Microstructure and Tribological Properties of a Babbit B83, Phys. Met. Metallogr., 2009, 108, p 519–526. https://doi.org/10.1134/S0031918X0911012X

    Article  Google Scholar 

  9. D. Zhang, F. Zhao, Y. Li, P. Li, Q. Zeng, and G. Dong, Study on Tribological Properties of Multi-layer Surface Texture on Babbitt Alloys Surface, Appl. Surf. Sci., 2016, 390, p 540–549. https://doi.org/10.1016/j.apsusc.2016.08.141

    Article  CAS  Google Scholar 

  10. H. Wu, Q. Bi, S. Zhu, J. Yang, and W. Liu, Friction and Wear Properties of Babbitt Alloy 16-16-2 under Sea Water Environment, Tribol. Int., 2011, 44(10), p 1161–1167. https://doi.org/10.1016/j.triboint.2011.05.007

    Article  CAS  Google Scholar 

  11. A.R. Lashin, M. Mossa, A. El-Bediwi, and M. Kamal, Study of Some Physical Properties of the Rapidly Solidified Sn–Sb–Cu–Zn Alloys, Mater. Des., 2013, 43, p 322–326. https://doi.org/10.1016/j.matdes.2012.06.014

    Article  CAS  Google Scholar 

  12. B. Leszczyńska-Madej and M. Madej, The Tribological Properties and the Microstructure Investigations of Tin Babbit with Pb Addition After Heat Treatment, Arch. Metall. Mater., 2016, 61(4), p 1861–1868. https://doi.org/10.1515/amm-2016-0300

    Article  CAS  Google Scholar 

  13. B. Leszczyńska-Madej and M. Madej, The Properties of Babbitt Bushes in Steam Turbine Sliding Bearings, Arch. Metall. Mater., 2011, 56(3), p 805–812. https://doi.org/10.2478/v10172-011-0089-6

    Article  CAS  Google Scholar 

  14. B. Leszczyńska-Madej and M. Madej, Effect of the Heat Treatment on the Microstructure and Properties of Tin Babbitt, Kovove Mater., 2013, 51, p 101–110. https://doi.org/10.4149/km20132101

    Article  Google Scholar 

  15. B.A. Potekhin, V.V. Il’yushin, and A.S. Khristolybov, Effect of Casting Methods on the Structure and Properties of Tin Babbit, Met. Sci. Heat Treat., 2009, 51, p 378–382. https://doi.org/10.1007/s11041-009-9181-1

    Article  CAS  Google Scholar 

  16. C. Kannan, R. Ramanujam, K. Venkatesan, N.V. Dheeraj, M. Raudhraa Sundaresh, and A. Vimal, An Investigation on the Tribological Characteristics of Al 7075 Based Single and Hybrid Nanocomposites, Mater. Today Proc., 2018, 5(5 Part 2), p 12837–12847. https://doi.org/10.1016/j.matpr.2018.02.268

    Article  CAS  Google Scholar 

  17. H. Singh and H. Bhowmick, Tribological Behaviour of Hybrid AMMC Sliding Against Steel and Cast Iron Under MWCNT-Oil Lubrication, Tribol. Int., 2018, 127, p 509–519. https://doi.org/10.1016/j.triboint.2018.06.030

    Article  CAS  Google Scholar 

  18. B.C. Kandpal, J. Kumar, and H. Singh, Fabrication and Characterisation of Al2O3/Aluminum Alloy 6061 Composites Fabricated by Stir Casting, Mater. Today Proc., 2017, 4(2 Part A), p 2783–2792. https://doi.org/10.1016/j.matpr.2017.02.157

    Article  Google Scholar 

  19. N. Parvin and M. Rahimian, The Characteristics of Alumina Particle Reinforced Pure Al Matrix Composite, Acta Phys. Pol. Ser. A, 2012, https://doi.org/10.12693/APhysPolA.121.108

    Article  Google Scholar 

  20. F. Ahmad, S.H. Jason Lo, M. Aslam, and A. Haziq, Tribology Behaviour of Alumina Particles Reinforced Aluminum Matrix Composites and Brake Disc Materials, Procedia Eng., 2013, 68, p 674–680. https://doi.org/10.1016/j.proeng.2013.12.238

    Article  CAS  Google Scholar 

  21. K.A. El-Aziz, D. Saber, and H.E.M. Sallam, Wear and Corrosion Behavior of Al–Si Matrix Composite Reinforced with Alumina, J. Bio Tribol. Corros., 2015, 1, p 5. https://doi.org/10.1007/s40735-014-0005-5

    Article  Google Scholar 

  22. K. Vijaya Bhaskar, S. Sundarrajan, B. Subba Rao, and K. Ravindra, Effect of Reinforcement and Wear Parameters on Dry Sliding Wear of Aluminum Composites—A Review, Mater. Today Proc., 2018, 5(2 Part 1), p 5891–5900. https://doi.org/10.1016/j.matpr.2017.12.188

    Article  CAS  Google Scholar 

  23. E. Feyzullahoglu, A. Zeren, and M. Zeren, Tribological Behaviour of Tin-Based Materials and Brass in Oil Lubricated Conditions, Mater. Des., 2008, 29, p 714–720

    Article  CAS  Google Scholar 

  24. B.S. Ünlü, Investigation of Tribological and Mechanical Properties of Metal Bearings, Bull. Mater. Sci., 2009, 32, p 451–457

    Article  Google Scholar 

  25. M.Ö. Bora, O. Coban, T. Sinmazcelik, V. Günay, and M. Zeren, Instrumented Indentation and Scratch Testing Evaluation of Tribological Properties of Tin-Based Bearing Materials, Mater. Des., 2010, 31, p 2707–2715

    Article  CAS  Google Scholar 

  26. S.S. Kim, H.N. Yu, I.U. Hwang, D.G. Lee, S.N. Kim, K. Suzuki et al., The Sliding Friction of Hybrid Composite Journal Bearing under Various Test Conditions, Tribol. Lett., 2009, 35, p 211–219

    Article  CAS  Google Scholar 

  27. S. Ishihara, K. Tamura, and T. Goshima, Effect of Amount of Antimony on Sliding Wear Resistance of White Metal, Tribol. Int., 2010, 43, p 935–938

    Article  CAS  Google Scholar 

  28. Y. Tachi, S. Ishihara, K. Tamura, T. Goshima, and A.J. McEvily, Predicting Sliding Wear Behaviour of a Tin-Based White Metal under Varying Pressure and Speed Conditions, Proc. Inst. Mech. Eng.J J. Eng. Tribol., 2005, 219, p 451–457

    Article  CAS  Google Scholar 

  29. L. Stanev, M. Kolev, B. Drenchev, and L. Drenchev, Open-Cell Metallic Porous Materials Obtained Through Space Holders—Part I: Production Methods. A Review, ASME J. Manuf. Sci. Eng., 2016, 139, p 050801–050801–050801–050821. https://doi.org/10.1115/1.4034439

    Article  Google Scholar 

  30. L. Stanev, M. Kolev, B. Drenchev, and L. Drenchev, Open-Cell Metallic Porous Materials Obtained Through Space Holders—Part II: Structure and Properties. A Review, ASME J. Manuf. Sci. Eng., 2016, 139, p 050802–050802–050802–050831. https://doi.org/10.1115/1.4034440

    Article  Google Scholar 

  31. S.R. Casolco, G. Dominguez, D. Sandoval, and J.E. Garay, Processing and Mechanical Behavior of Zn–Al–Cu Porous Alloys, Mater. Sci. Eng., A, 2007, 471, p 28. https://doi.org/10.1016/j.msea.2007.03.009

    Article  CAS  Google Scholar 

  32. O. Diologent, E. Combaz, V. Laporte, R. Goodall, L. Weber, F. Duc, and A. Mortensen, Processing of Ag–Cu Alloy Foam by the Replication Process, Scripta Mater., 2009, 61, p 351–354. https://doi.org/10.1016/j.scriptamat.2009.04.024

    Article  CAS  Google Scholar 

  33. A.H. Brothers, R. Scheunemann, J.D. DeFouw, and D.C. Dunand, Processing and Structure of Open-Celled Amorphous Metal Foams, Scripta Mater., 2005, 52, p 335–339. https://doi.org/10.1016/j.scriptamat.2004

    Article  CAS  Google Scholar 

  34. F. Diologent, R. Goodall, and A. Mortensen, Creep of Aluminium–Magnesium Open Cell Foam, Acta Mater., 2009, 57, p 830–837. https://doi.org/10.1016/j.actamat.2008.10.019

    Article  CAS  Google Scholar 

  35. A. Hassani, A. Habibolahzadeh, and H. Bafti, Production of Graded Aluminium Foams via Powder Space Holder Technique, Mater. Des., 2012, 40, p 510–515. https://doi.org/10.1016/j.matdes.2012.04.024

    Article  CAS  Google Scholar 

  36. S. Soubielle, F. Diologent, L. Salvo, and A. Mortensen, Creep of Replicated Microcellular Aluminium, Acta Mater., 2011, 59, p 440. https://doi.org/10.1016/j.actamat.2010.09.037

    Article  CAS  Google Scholar 

  37. L. Stanev, B. Drenchev, A. Yotov, and R. Lazarova, Compressive Properties and Energy Absorption Behavior of AlSi10Mg Open-Cell Foam, J. Mater. Sci. Technol., 2014, 22, p 44–53

    Google Scholar 

  38. A.K. Valeeva, I.S. Valeev, and R.F. Fazlyakhmetov, Effect of Structure of B83 Babbit on Its Wear, J. Frict. Wear, 2014, 35, p 311–315. https://doi.org/10.3103/S1068366614040138

    Article  Google Scholar 

  39. L.K. Bolotova, I.E. Kalashnikov, L.I. Kobeleva et al., Structure and Properties of the B83 Babbit Alloy Based Composite Materials Produced by Extrusion, Inorg. Mater. Appl. Res., 2018, 9, p 478–483. https://doi.org/10.1134/S2075113318030103

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the European Regional Development Fund within the OP “Science and Education for Smart Growth 2014–2020,” Project CoE “National Center of Mechatronics and Clean Technologies,” No. BG05M2OP001-1.001-0008-C01.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihail Kolev.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stanev, L., Kolev, M., Drenchev, L. et al. Fabrication Technique and Characterization of Aluminum Alloy-Based Porous Composite Infiltrated with Babbitt Alloy. J. of Materi Eng and Perform 29, 3767–3773 (2020). https://doi.org/10.1007/s11665-020-04891-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04891-x

Keywords

Navigation