Skip to main content
Log in

Evolution of Lamellar Interface Cracks During Isothermal Cyclic Test of Plasma-Sprayed 8YSZ Coating with a Columnar-Structured YSZ Interlayer

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The failure of plasma-sprayed thermal barrier coatings (TBC) usually occurs through spalling of ceramic coating. The crack evolution during thermal cycling of TBC is directly associated with its spalling. In this paper, the cracks in TBC along the direction of the interface between ceramic coating and bond coat were examined from cross-section of TBC experienced different numbers of thermal cycle, and crack number and the total length of cracks were measured to aim at understanding the failure mechanism. TBC consists of cold-sprayed NiCoCrAlTaY bond coat on IN738 superalloy and double layered plasma-sprayed 8YSZ with a columnar grain structured YSZ interlayer of about 20 μm thick and about 230 μm lamellar YSZ. With each isothermal cyclic test, the TBC samples were kept at 1150 °C for 26 min hold and then cooled down to a temperature less than 80 °C in 4 min by air forced cooling. Results showed that cracks propagated primarily within lamellar-structured YSZ over the columnar YSZ along lamellar interface. The measurement from the cross-section revealed that crack number and total crack length apparently increased with the increase of the number of thermal cycle. It was found that cracks with a length less than a typical size of 200 μm accounted for the majority of cracks despite the number of thermal cycle during the test. A crack initiation and propagation model for plasma-sprayed TBC is proposed with a uniform distribution of circular cracks. The propagatable cracks form homogeneously within plasma-sprayed porous YSZ coating at the early stage of thermal cycling and propagate at an identical rate during thermal cycling. Only a few of large cracks are formed before most cracks reach to the critical size for multi-cracks linking-up. The propagation of most cracks to the critical size will leads to the rapid crack bridging and subsequent spalling of top ceramic TBC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A.G. Evans, D.R. Mumm, J.W. Hutchinson, G.H. Meier, and F.S. Pettit, Mechanisms Controlling the Durability of Thermal Barrier Coatings, Prog. Mater. Sci., 2001, 46(5), p 505-553

    Article  Google Scholar 

  2. N.P. Padture, M. Gell, and E.H. Jordan, Thermal Barrier Coatings for Gas-Turbine Engine Applications, Science, 2002, 12(296), p 280-284

    Article  Google Scholar 

  3. C.U. Hardwickre, Y.-C. Lau, Advances in Thermal Spray Coatings for Gas Turbines and Energy Generation: A Review, J. Therm. Spray Technol., 2013, 22, p 564-567

    Article  Google Scholar 

  4. Y.S. Tian, C.Z. Chen, and D.Y. Wang, Recent Developments in Zirconia Thermal Barrier Coatings, Surf. Rev. Lett., 2005, 12(3), p 378-396

    Google Scholar 

  5. A. Feuerstein, J. Knapp, T. Taylor, A. Bocavage, and N. Hitchman, Technical and Economical Aspects of Current Thermal Barrier Coatings Systems for Gas Turbines by Thermal Spray and EBPVD: A Review, J. Therm. Spray Technol., 2008, 17, p 199-213

    Article  CAS  Google Scholar 

  6. R. McPherson, The Relationship Between the Mechanism of Formation, Microstructure and Properties of Plasma-Sprayed Coatings, Thin Solid Films, 1981, 87, p 297-310

    Article  Google Scholar 

  7. S. Kuroda and T.W. Clyne, The Quenching Stress in Thermally Sprayed Coating, Thin Solid Films, 1991, 200, p 49-66

    Article  CAS  Google Scholar 

  8. C.-J. Li, G.-J. Yang, and C.-X. Li, Development of Particle Interface Bonding in Thermal Spray Coating: A Review, J. Therm. Spray Technol., 2013, 22, p 192-206

    Article  CAS  Google Scholar 

  9. R.A. Miller, Thermal Barrier Coatings for Aircraft Engines: History and Directions, J. Thermal Spray Technol., 1997, 6(1), p 35-42

    Article  CAS  Google Scholar 

  10. A.D. Jadhav, N.P. Padture, and E.H. Jordan, Low-Thermal-Conductivity Plasma-Sprayed Thermal Barrier Coatings with Engineered Microstructures, Acta Mater., 2006, 54, p 3343-3349

    Article  CAS  Google Scholar 

  11. J.R. Nicholls, K.J. Lawson, and A. Johnstone, Methods to Reduce the Thermal Conductivity of EB-PVD TBCs, Surf. Coat. Technol., 2002, 151-152, p 383-391

    Article  CAS  Google Scholar 

  12. H.B. Guo, H.B. Guo, S. Kuroda, and H. Murakami, Segmented Thermal Barrier Coatings Produced by Atmospheric Plasma Spraying Hollow Powders, Thin Solid Films, 2006, 506-507, p 136-139

    Article  CAS  Google Scholar 

  13. A. Ohmori and C.-J. Li, Quantitative Characterization of the Structure of Plasma Sprayed Al2O3 Coating by Using Copper Electroplating, Thin Solid Films, 1991, 201, p 241-252

    Article  CAS  Google Scholar 

  14. Y. Li, C.-J. Li, Q. Zhang, L.-K. Xing, and G.-J. Yang, Effect of Chemical Compositions and Surface Morphologies of MCrAlY Coating on Its Isothermal Oxidation Behavior, J. Therm. Spray Technol., 2011, 20, p 121-131

    Article  Google Scholar 

  15. B.R. Marple, R.S. Lima, C. Moreau, S.E. Kruger, L. Xie, and M.R. Dorfman, Yttria-Stabilized Zirconia Thermal Barriers Sprayed Using N2-H2 and Ar-H2 Plasmas: Influence of Processing and Heat Treatment on Coating Properties, J. Therm. Spray Technol., 2007, 16, p 791-799

    Article  CAS  Google Scholar 

  16. P. Fauchais and G. Montavon, Latest Developments in Suspension and Liquid Precursor Thermal Spraying, J. Therm. Spray Technol., 2010, 19(1-2), p 226-239

    Article  Google Scholar 

  17. A. Guignard, G. Mauer, R. Vasen, and D. Stover, Deposition and Characteristics of Submicrometer-Structured Thermal Barrier Coatings by Suspension Plasma Spraying, J. Therm. Spray Technol., 2012, 21, p 416-424

    Article  CAS  Google Scholar 

  18. A. Hospech, G. Mauer, R. Vasen, and D. Stover, Characteristics of Ceramic Coatings Made by Thin Film Low Pressure Plasma Spraying (LPPS-TF), J. Therm. Spray Technol., 2012, 21, p 435-440

    Article  Google Scholar 

  19. R. Lima and B. Marple, Toward Highly Sintering-Resistant Nano structured ZrO2-7wt.%Y2O3 Coatings for TBC Applications by Employing Differential Sintering, J Therm. Spray Technol., 2008, 17, p 846-852

    Article  CAS  Google Scholar 

  20. R. Vasen, G.Pracht, D. Stover, New Thermal Barrier Coating Systems with a Graded Ceramic Coatings, Proceedings of Thermal Spray Comference 2002, Essen, E. Lugscheider, Ed., DVS-German Welding Research Society, Dusseldorf, 2002, p 202-207

  21. X.Y. Xie, H.B. Guo, and S.K. Gong, Mechanical Properties of LaTi2Al9O19 and Thermal Cycling Behaviors of Plasma-Sprayed LaTi2Al9O19/YSZ Thermal Barrier Coatings, J. Therm. Spray Technol., 2010, 19, p 119-1185

    Article  Google Scholar 

  22. C.-J. Li, Y. Li, G.-J. Yang, and C.-X. Li, A Novel Plasma-Sprayed Durable Thermal Barrier Coating with the Well-Bonded YSZ Interlayer Between Porous YSZ and Bond Coat, J. Therm. Spray Technol., 2012, 21, p 383-390

    Article  CAS  Google Scholar 

  23. H. Yamano, K. Tani, Y. Harada, and T. Teratani, Oxidation Control with Chromate Pretreatment of McrAlY Unmelted Particle and Bond Coat in Thermal Barrier Systems, J. Therm. Spray Technol., 2008, 17, p 275-283

    Article  CAS  Google Scholar 

  24. D. Naumenko, V. Shemet, L. Singheiser, and W.J. Quadakkers, Failure Mechanisms of Thermal Barrier Coatings on McrAlY-Type Bondcoats Associated with the Formation of Thermally Grown Oxide, J. Mater. Sci., 2009, 44, p 1687-1703

    Article  CAS  Google Scholar 

  25. Y. Li, C.-J. Li, G.-J. Yang, and L.-K. Xing, Thermal Fatigue Behavior of Thermal Barrier Coatings with the MCrAlY Bond Coats by Cold Spraying and Low-Pressure Plasma Spraying, Surf. Coat. Technol., 2010, 205, p 2225-2233

    Article  CAS  Google Scholar 

  26. X.Q. Cao, R. Vasen, and D. Stover, Ceramic Materials for Thermal Barrier Coatings, J. Eur. Ceram Soc., 2004, 24, p 1-10

    Article  CAS  Google Scholar 

  27. D. Stover, G. Pracht, H. Lehmann, M. Dietrich, J.-E. Doring, and R. Vasen, New Material Concepts for the Next Generation of Plasma-Sprayed Thermal Barrier Coatings, J. Therm. Spray Technol., 2004, 13, p 76-83

    Article  Google Scholar 

  28. A. Rabiei and A.G. Evans, Failure Mechanisms Associated with the Thermally Grown Oxide in Plasma-Sprayed Thermal Barrier Coatings, ACTA Mater., 2000, 48(15), p 3963-3976

    Article  CAS  Google Scholar 

  29. N.S. Cheruvu, K.S. Chan, and R. Viswanathan, Evaluation, Degradation and Life Assessment of Coatings for Land Based Combustion, Energy Mater., 2006, 1(1), p 33-47

    Article  CAS  Google Scholar 

  30. R. Vasen, S. Giesen, and D. Atover, Lifetime of Plasma-Sprayed Thermal Barrier Coatings: Comparison of Numerical and Experimental Results, J. Therm. Spray Technol., 2009, 18, p 835-845

    Article  Google Scholar 

  31. S. Parthasarathi, B.R. Tittmann, and M. Nishida, Characterisation of Film Integrity Through Scanning Acoustic Microscopy, Surf. Coat. Technol., 1998, 105, p 1-7

    Article  CAS  Google Scholar 

  32. G. Rosa, P. Psillaky, R. Oltra et al., Simultaneous Laser Generation and Laser Ultrasonic Detection of the Mechanical Break-Down of a Coating-Substrate Interface, Ultrasonics, 2001, 39, p 355-365

    Article  CAS  Google Scholar 

  33. C.K. Lin, S.H. Leigh, and C.C. Berndt, Acoustic Emission Responses of Plasma-Sprayed Alumina-3% Titania Deposits, Thin Solid Films, 1997, 310, p 108-114

    Article  CAS  Google Scholar 

  34. M. Watanabe, T. Okabe, M. Enoki et al., Evaluation of in-situ Fracture Toughness of Ceramic Coatings at Elevated Temperature by AE Inverse Analysis, Sci. Technol. Adv. Mater., 2003, 4, p 205-212

    Article  CAS  Google Scholar 

  35. X. Maldague, Application of Infrared Thermography in Non-Destructive Evaluation, Trends in Optical Nondestructive Testing and Inspection, P.K. Rastogi and D. Inaudi, Ed., Elsevier Science, Infrared Technology for Nondestructive Testing/Wiley, New York, 2001,

    Google Scholar 

  36. C. Meola and G.M. Carlomagno, Application of Infrared Thermography to Adhesion Science, J. Adv. Sci. Technol., 2006, 20, p 589-632

    Article  CAS  Google Scholar 

  37. S. Chaki, P. Marical, and S. Panier, Interfacial Defects Detection in Plasma-Sprayed Ceramic Coating Components Using Two Stimulated Infrared Thermography Techniques, NDT&E Int., 2011, 44, p 519-522

    Article  CAS  Google Scholar 

  38. J.W. Byeon, B. Jayaraj, S. Vishweswaraiah, S. Rhee, V.H. Desai, and Y.H. Sohn, Non-Destructive Evaluation of Degradation in Multi-Layered Thermal Barrier Coatings by Electrochemical Impedance Spectroscopy, Mater. Sci. Eng. A, 2005, 407, p 213-225

    Article  Google Scholar 

  39. W.-Z. Wang, C.-J. Li, and K. Sonoya, Study of Lamellar Microstructure of Plasma-Sprayed ZrO2-8wt.%Y2O3 Coatings, Tagungsband Conference Proceedings (2005 Int. Thermal Spray Conf.), E. Lugscheider, Ed., May 2-5 (Bussel, Switzerland), German Welding Research Institute, 2005, Germany, p 1506-1510

  40. Y.Z. Xing, C.-J. Li, Q. Zhang, C.X. Li, and G.-J. Yang, Influence of Microstructure on the Ionic Conductivity of Plasma-Sprayed Yttria-Stabilized Zirconia Deposits, J. Am. Ceram. Soc., 2008, 91, p 3931-3936

    Article  CAS  Google Scholar 

  41. C.-J. Li and A. Ohmori, Relationships Between the Microstructure and Properties of Thermally Sprayed Deposits, J. Therm. Spray Technol., 2002, 11(3), p 365-374

    Article  CAS  Google Scholar 

  42. C.-J. Li, W.-Z. Wang, and Y. He, Dependency of Fracture Toughness of Plasma-Spray Al2O3 Coatings on Lamellar Structure, J. Therm. Spray Technol., 2004, 13, p 425-431

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The project was financially supported by the National Basic Research Program of China (No. 2012CB625100) and National Nature Science Foundation of China (Granted No. 50725101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Jiu Li.

Additional information

This article is an invited paper selected from presentations at the 5th Asian Thermal Spray Conference (ATSC 2012) and has been expanded from the original presentation. ATSC 2012 was held at the Tsukuba International Congress Center, Ibaraki, Japan, November 26-28, 2012, and was organized by the Japan Thermal Spray Society and the Asian Thermal Spray Society.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, CJ., Li, Y., Yang, GJ. et al. Evolution of Lamellar Interface Cracks During Isothermal Cyclic Test of Plasma-Sprayed 8YSZ Coating with a Columnar-Structured YSZ Interlayer. J Therm Spray Tech 22, 1374–1382 (2013). https://doi.org/10.1007/s11666-013-9965-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-013-9965-0

Keywords

Navigation