Skip to main content
Log in

Microstructure and Tribological Properties of Ni-Based Laser-Clad Coatings by Rare Earth Modification

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

TiC + TiB2 + Ti2Ni-reinforced Ni-based laser-clad coatings were prepared on Ti-6Al-4V by CeO2 modification. The forming quality, microstructure, element distribution, microhardness and wear resistance of the coatings were studied. The results showed that adding 2 wt.% CeO2 effectively eliminated cracks but led to the micro-pores. The coatings mainly consisted of TiC, TiB2, Ti2Ni and matrix α-Ti. When 2 wt.% CeO2 was added, the coating microstructure was remarkably refined, uniform and dense, and exposed surface area of matrix decreased. TiC changed from dendritic to petal-shaped and granular, TiB2 from long rod-shaped to short rod-shaped, Ti2Ni from irregular bulk-like to microporous irregular bulk-like. Al, Cr, Fe and Si distributed uniformly in the Ni-rich matrix, and V was mainly segregated on the TiB2. Ce2O3 particles formed by the decomposition of CeO2 in the coating mainly distributed around TiC. The planar lattice disregistry δ between the interface (10\(\overline{1}\)0) of Ce2O3 and the interface (110) of TiC was 4.00%, and Ce2O3 could act as the nucleation substrate to effectively refine TiC. With the addition of CeO2, the microhardness was increased, and the wear depth, wear volume and friction coefficient were decreased. 2CeO2 coating exhibited the best wear resistance and anti-friction compared with 0CeO2 coating and exhibited an abrasive wear pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.

Similar content being viewed by others

References

  1. P. Vo, E. Irissou, J.G. Legoux and S. Yue, Mechanical and Microstructural Characterization of Cold-Sprayed Ti-6Al-4V After Heat Treatment, J. Therm. Spray Technol., 2013, 22, p 954–964.

    Article  CAS  Google Scholar 

  2. I. Hacisalihoglu, A. Samancioglu, F. Yildiz, G. Purcek and A. Alsaran, Tribocorrosion Properties of Different Type Titanium Alloys in Simulated Body Fluid, Wear, 2015, 332–333, p 679–686.

    Article  Google Scholar 

  3. Y.H. Lin, Y.P. Lei, X.Q. Li, X.H. Zhi and H.G. Fu, A Study of TiB2/TiB Gradient Coating by Laser Cladding on Titanium Alloy, Opt. Lasers Eng., 2016, 82, p 48–55.

    Article  Google Scholar 

  4. H. Paydas, A. Mertens, R. Carrus, J. Lecomte-Beckers and J. Tchoufang Tchuindjang, Laser Cladding as Repair Technology for Ti-6Al-4V Alloy: Influence of Building Strategy on Microstructure and Hardness, Mater. Des., 2015, 85, p 497–510.

    Article  CAS  Google Scholar 

  5. A. Wank, B. Wielage, H. Podlesak, K.J. Matthes and G. Kolbe, Protection of Ti6Al4V Surfaces by Laser Dispersion of Diborides, J. Therm. Spray Technol., 2005, 14(1), p 134–140.

    Article  CAS  Google Scholar 

  6. Y.X. Chen, D.J. Wu, G.Y. Ma, W.F. Lu and D.M. Guo, Coaxial Laser Cladding of Al2O3-13%TiO2 Powders on Ti-6Al-4 V Alloy, Surf. Coat. Technol., 2013, 228, p S452–S455.

    Article  CAS  Google Scholar 

  7. J.T.M.D. Hosson, Surface and Interface Engineering, Int. J. Mater. Res., 1997, 100(10), p 1279–1280.

    Google Scholar 

  8. Y. You, J.H. Yan and M.F. Yan, Atomistic Diffusion Mechanism of Rare Earth Carburizing/Nitriding on Iron-Based Alloy, Appl. Surf. Sci., 2019, 484(1), p 710–715.

    Article  CAS  Google Scholar 

  9. R. Vilar, Laser Cladding, J. Laser Appl., 1999, 11(2), p 385–392.

    Article  Google Scholar 

  10. Y.T. Zhao, M.Y. Lu, Z.Q. Fan, P. McCormick, Q.Y. Tan, N. Mo and H. Huang, Microstructures and Mechanical Properties of Wear-Resistant Titanium Oxide Coatings Deposited on Ti-6Al-4V Alloy Using Laser Cladding, J. Eur. Ceram. Soc., 2020, 40(3), p 798–810.

    Article  CAS  Google Scholar 

  11. E. Toyserkani, A. Khajepour and S.F. Corbin, Laser Cladding, CRC Press, Boca Raton, 2004.

    Book  Google Scholar 

  12. M. Tsujikawa, D. Yoshida, N. Yamauchi, N. Ueda and T. Sone, Surface Modification of SUS304 Stainless Steel Using Carbon Push-Ahead Effect by Low Temperature Plasma Nitriding, Mater. Trans., 2005, 46(4), p 863–868.

    Article  CAS  Google Scholar 

  13. R. Bayón, A. Igartua, X. Fernández, R. Martínez and J. Damborenea, Corrosion-Wear Behaviour of PVD Cr/CrN Multilayer Coatings for Gear Applications, Tribol. Int., 2009, 42(4), p 591–599.

    Article  Google Scholar 

  14. J.H. Ouyang, S. Nowotny, A. Richter and E. Beyer, Characterization of Laser Clad Yttria Partially-Stabilized ZrO2 Ceramic Layers on Steel 16MnCr5, Surf. Coat. Technol., 2001, 137(1), p 12–20.

    Article  CAS  Google Scholar 

  15. P.J. Callus and C.C. Berndt, Relationship Between the Mode II Fracture Toughness and Microstructure of Thermal Spray Coatings, Surf. Coat. Technol., 1999, 114(2), p 114–128.

    Article  CAS  Google Scholar 

  16. X.M. Li, Y.Y. Yang, T.M. Shao, Y.S. Jin and G. Barbezat, Impact Wear Performances of Cr3C2-NiCr Coatings by Plasma and HVOF Spraying, Wear, 1997, 202(2), p 208–214.

    Article  CAS  Google Scholar 

  17. F. Weng, C.Z. Chen and H.J. Yu, Research Status of Laser Cladding on Titanium and Its Alloys: A Review, Mater. Des., 2014, 58, p 412–425.

    Article  CAS  Google Scholar 

  18. J.J. Dai, J.Y. Zhu, C.Z. Chen and F. Weng, High Temperature Oxidation Behavior and Research Status of Modifications on Improving High Temperature Oxidation Resistance Of Titanium Alloys and Titanium Aluminides: A Review, J. Alloys Compd., 2016, 685, p 784–798.

    Article  CAS  Google Scholar 

  19. M. Erfanmanesh, R. Shoja-Razavi, H. Abdollah-Pour and H. Mohammadian-Semnani, Influence of Using Electroless Ni-P Coated WC-Co Powder on Laser Cladding of Stainless Steel, Surf. Coat. Technol., 2018, 348, p 41–54.

    Article  CAS  Google Scholar 

  20. X.B. Liu and H.M. Wang, Microstructure and Tribological Properties of Laser Clad γ/Cr7C3/TiC Composite Coatings on γ-TiAl Intermetallic Alloy, Wear, 2007, 262(5–6), p 514–521.

    Article  CAS  Google Scholar 

  21. Q.W. Meng, L. Geng and B.Y. Zhang, Laser Cladding of Ni-Base Composite Coatings onto Ti-6Al-4V Substrates with Pre-placed B4C+NiCrBSi Powders, Surf. Coat. Technol., 2006, 200(16–17), p 4923–4928.

    Article  CAS  Google Scholar 

  22. H. Yan, K.W. Liu, P.L. Zhang, J. Zhao, Y. Qin, Q.H. Lu and Z.S. Yu, Fabrication and Tribological Behaviors of Ti3SiC2/Ti5Si3/TiC/Ni-Based Composite Coatings by Laser Cladding for Self-lubricating Applications, Opt. Laser Technol., 2020, 126, p 106077.

    Article  CAS  Google Scholar 

  23. R.L. Sun, Y. Tang and X.J. Yang, Microstructure and Tribological Properties of In-Situ Synthesized TiB2-TiC/Ni-Based Composite Coating by Laser Cladding, Trans. Mater. Heat Treat., 2004, 25(05), p 1000–1003.

    CAS  Google Scholar 

  24. J. Li, X.J. Zhang, H.P. Wang and M.P. Li, Microstructure and Mechanical Properties of Ni-Based Composite Coatings Reinforced by In Situ Synthesized TiB2+TiC by Laser Cladding, Int. J. Miner. Metall. Mater., 2013, 20(01), p 57.

    Article  CAS  Google Scholar 

  25. F. Wu, T. Chen, H.J. Wang and D.F. Liu, Effect of Mo on Microstructures and Wear Properties of In Situ Synthesized Ti(C, N)/Ni-Based Composite Coatings by Laser Cladding, Materials, 2017, 10(9), p 1047.

    Article  Google Scholar 

  26. S.F. Zhou and X.Q. Dai, Laser Induction Hybrid Rapid Cladding of WC Particles Reinforced NiCrBSi Composite Coatings, Appl. Surf. Sci., 2010, 256(14), p 4708–4714.

    Article  CAS  Google Scholar 

  27. J.M.S. Sousa, F. Ratusznei, M. Pereira, R. Medeiros Castro and E.I.M. Curi, Abrasion Resistance of Ni-Cr-B-Si Coating Deposited by Laser Cladding Process, Tribol. Int., 2019, 143, p 106002.

    Article  Google Scholar 

  28. V. Fallah, M. Alimardani, S.F. Corbin and A. Khajepour, Impact of Localized Surface Preheating on the Microstructure and Crack Formation in Laser Direct Deposition of Stellite 1 on AISI 4340 Steel, Appl. Surf. Sci., 2010, 257(5), p 1716–1723.

    Article  CAS  Google Scholar 

  29. X. Wang, M. Zhang and S. Qu, Development and Characterization of (Ti, Mo)C Carbides Reinforced Fe-Based Surface Composite Coating Produced by Laser Cladding, Opt. Laser Eng., 2010, 48(9), p 893–898.

    Article  Google Scholar 

  30. Y. Huang and X. Zeng, Investigation on Cracking Behavior of Ni-Based Coating by Laser-Induction Hybrid Cladding, Appl. Surf. Sci., 2010, 256(20), p 5985–5992.

    Article  CAS  Google Scholar 

  31. Y.N. Liu, R.L. Sun, W. Niu, T.G. Zhang and Y.W. Lei, Effects of CeO2 on Microstructure and Properties of TiC/Ti2Ni Reinforced Ti-Based Laser Cladding Composite Coatings, Opt. Lasers Eng., 2019, 120, p 84–94.

    Article  Google Scholar 

  32. C.Q. Qi, X.H. Zhan, Q.Y. Gao, L.J. Liu, Y.Z. Song and Y.P. Li, The Influence of the Pre-placed Powder Layers on the Morphology, Microscopic Characteristics and Microhardness of Ti-6Al-4V/WC MMC Coatings During Laser Cladding, Opt. Laser Technol., 2019, 119, p 105572.

    Article  CAS  Google Scholar 

  33. L.F. Cai, Y.Z. Zhang and L.K. Shi, Microstructure and Formation Mechanism of Titanium Matrix Composites Coating on Ti-6Al-4V by Laser Cladding, Rare Met., 2007, 26(4), p 342.

    Article  CAS  Google Scholar 

  34. K.M. Zhang, J.X. Zou, J. Li, Z.S. Yu and H.P. Wang, Surface Modification of TC4 Ti alloy by Laser Cladding with TiC+Ti Powders, Trans. Nonferrous Met. Soc. China, 2010, 20(11), p 2192–2197.

    Article  CAS  Google Scholar 

  35. F. Weng, H.J. Yu, C.Z. Chen, J.L. Liu and L.J. Zhao, Fabrication of Co-Based Coatings on Titanium Alloy by Laser Cladding with CeO2 Addition, Mater. Manuf. Process., 2016, 31(11), p 1461–1467.

    Article  CAS  Google Scholar 

  36. Q.T. Li, Y.P. Lei and H.G. Fu, Laser Cladding In-Situ NbC Particle Reinforced Fe-Based Composite Coatings with Rare Earth Oxide Addition, Surf. Coat. Technol., 2014, 239, p 102–107.

    Article  CAS  Google Scholar 

  37. T. Zhao, X. Cai, S.X. Wang and S. Zheng, Effect of CeO2 on Microstructure and Corrosive Wear Behavior of Laser-Cladded Ni/WC Coating, Thin Solid Films, 2000, 379, p 128–132.

    Article  Google Scholar 

  38. L. Ding and S.S. Hu, Effect of Nano-CeO2 on Microstructure and Wear Resistance of Co-Based Coatings, Surf. Coat. Technol., 2015, 276, p 565–572.

    Article  CAS  Google Scholar 

  39. K.L. Wang, Q.B. Zhang, M.L. Sun and Y.M. Zhu, Effect of Laser Surface Cladding of Ceria on the Wear and Corrosion of Nickel-Based Alloys, Surf. Coat. Technol., 1997, 96(2–3), p 267–271.

    Article  CAS  Google Scholar 

  40. J.N. Li, C.Z. Chen and J.H. Hu, Effect of SiC/Nano-CeO2 on Wear Resistance and Microstructures of Ti3Al/γ-Ni Matrix Laser-Cladded Composite Coating on Ti-6Al-4V Alloy, Surf. Interface Anal., 2012, 44(5), p 559–564.

    Article  CAS  Google Scholar 

  41. R. Shi and Y. Wang, Variant Selection During α Precipitation in Ti-6Al-4V Under the Influence of Local Stress—A Simulation Study, Acta Mater., 2013, 61(16), p 6006–6024.

    Article  CAS  Google Scholar 

  42. P. Barriobero-Vila, J. Gussone, J. Haubrich, S. Sandlöbes, J. Cesar Da Silva, P. Cloetens, N. Schell and G. Requena, Inducing Stable α+β Microstructures During Selective Laser Melting of Ti-6Al-4V Using Intensified Intrinsic Heat Treatments, Materials, 2017, 10(3), p 268.

    Article  Google Scholar 

  43. P. Wu, H.M. Du, X.L. Chen, Z.Q. Li, H.L. Bai and E.Y. Jiang, Influence of WC Particle Behavior on the Wear Resistance Properties of Ni-WC Composite Coatings, Wear, 2004, 257(1–2), p 142–147.

    Article  CAS  Google Scholar 

  44. H. Huang, G.Y. Yuan, J. Tong and W.J. Ding, Microstructure and Mechanical Properties of As-Cast and Solution-Treated Mg-Zn-Gd-Based Alloys Reinforced with Quasicrystals, Int. J. Mater. Res., 2013, 104(4), p 380–385.

    Article  CAS  Google Scholar 

  45. V. Stetsovych, F. Pagliuca, F. Dvorak, T. Duchon, M. Vorokhta, M. Aulicka, J. Lachnitt, S. Schernich, I. Matolinova, K. Veltruska, T. Skala, D. Mazur, J. Myslivecek, J. Libuda and V. Matolin, Epitaxial Cubic CeO Films via Ce-CeO Interfacial Reaction, J. Phys. Chem. Lett., 2013, 4(6), p 866–871.

    Article  CAS  Google Scholar 

  46. D.L. Ye and J.H. Hu, Utility Inorganic Materials Thermodynamics Data Handbook, 2nd ed. Metallurgy Industry Press, Beijing, 2002, p 115

    Google Scholar 

  47. P. Wang, J. Li, C.Z. Lin, L. Yang, L. Peng, Y. Wang, C. Xiao and J.C. Chen, First-Principles Calculations of Electronic Structure and Mechanical Properties of Ti-Ni Intermetallic Compounds, Trans. Nonferrous Met. Soc. China, 2016, 26(12), p 2546–2554.

    Google Scholar 

  48. C.G. Mccracken, Review of titanium. Powder-production methods, Int. J. Powder Metall., 2010, 46(5), p 19–26.

    CAS  Google Scholar 

  49. F.L. Hu, J. Li, Y.F. Tao and Y.H. Lv, Corrosion Behaviors of TiNi/Ti2Ni Matrix Coatings in the Environment Rich in Cl Ions, Surf. Coat. Technol., 2017, 311, p 295–306.

    Article  CAS  Google Scholar 

  50. Y.S. Tian, Growth Mechanism of the Tubular TiB Crystals In Situ Formed in the Coatings Laser-Borided on Ti-6Al-4V Alloy, Mater. Lett., 2010, 64(22), p 2483–2486.

    Article  CAS  Google Scholar 

  51. X.M. Sui, J. Lu, X. Zhang, L. Sun and W.P. Zhang, Microstructure and Properties of TiC-Reinforced Ti2Ni/Ti5Si3 Eutectic-Based Laser Cladding Composite Coating, J. Therm. Spray Technol., 2020, 29, p 1838–1846.

    Article  CAS  Google Scholar 

  52. X.Q. Cai, D.P. Wang, Y. Wang and Z.W. Yang, Microstructural Evolution and Mechanical Properties of TiB2-TiC-SiC Ceramics Joint Brazed Using Ti-Ni Composite Foils, J. Eur. Ceram. Soc., 2020, 40(9), p 3380–3390.

    Article  CAS  Google Scholar 

  53. C.K. Sahoo and M. Masanta, Effect of Pulse Laser Parameters on TiC Reinforced AISI 304 Stainless Steel Composite Coating by Laser Surface Engineering Process, Opt. Lasers Eng., 2015, 67, p 36–48.

    Article  Google Scholar 

  54. M.M. Quazi, M.A. Fazal, A.S.M.A. Haseeb, F. Yusof, H.H. Masjuki and A. Arslan, Effect of Rare Earth Elements and Their Oxides on Tribo-Mechanical Performance of Laser Claddings: A Review, J. Rare Earths, 2016, 34(6), p 549–564.

    Article  CAS  Google Scholar 

  55. Y.H. Qu, J.D. Xing, X.H. Zhi, J.Y. Peng and H.G. Fu, Effect of Cerium on the As-Cast Microstructure of a Hypereutectic High Chromium Cast Iron, Mater. Lett., 2008, 62(17–18), p 3024–3027.

    Article  CAS  Google Scholar 

  56. B.B. Wu, N. Ni, X.H. Fan, X.F. Zhao, P. Xiao and F.W. Guo, Strength Degradation of SiC Fibers with a Porous ZrB2-SiC Coating: Role of the Coating Porous Structure, J. Eur. Ceram. Soc., 2020, 40(4), p 961–971.

    Article  CAS  Google Scholar 

  57. A.F.A. Hoadley and M. Rappaz, A Thermal Model of Laser Cladding by Powder Injection, Metall. Trans. B, 1992, 23B(5), p 631–642.

    Article  CAS  Google Scholar 

  58. J.W. Rutter and B. Chalmers, A Prismatic Substructure Formed During Solidification of Metals, Can. J. Phys., 1953, 31(1), p 15–39.

    Article  CAS  Google Scholar 

  59. T.B. Massalaki, Binary Alloy Phase Diagrams, American Society for Metals, Metals Park, 1986, p 1

    Google Scholar 

  60. T. Ahmed and H.J. Rack, Phase Transformations During Cooling in α+β Titanium Alloys, Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process., 1998, 243(1), p 206–211.

    Article  Google Scholar 

  61. J.J. Yang, H.C. Yu, J. Yin, M. Gao, Z.M. Wang and X.Y. Zeng, Formation and Control of Martensite in Ti-6Al-4V Alloy Produced by Selective Laser Melting, Mater. Des., 2016, 108, p 308–318.

    Article  CAS  Google Scholar 

  62. J.L. Liu, H.J. Yu, C.Z. Chen, F. Weng and J.J. Dai, Research and Development Status of Laser Cladding on Magnesium Alloys: A REVIEW, Opt. Lasers Eng., 2017, 93, p 195–210.

    Article  Google Scholar 

  63. R.D. Zhu, Z.Y. Li, X.X. Li and Q. Sun, Microstructure and Properties of the Low-Power-Laser Clad Coatings on Magnesium Alloy with Different Amount of Rare Earth Addition, Appl. Surf. Sci., 2015, 353, p 405–413.

    Article  CAS  Google Scholar 

  64. F. Behzad, S.F. Wayne, L. Gladius and A. Ebrahim, A Review on Melt-Pool Characteristics in Laser Welding of Metals, Adv. Mater. Sci. Eng., 2018, 11, p 1–18.

    Google Scholar 

  65. P.A. Korzhavyi, L.V. Pourovskii, H.W. Hugosson, A.V. Ruban and B. Johansson, Ab Initio Study of Phase Equilibria in TiCx, Phys. Rev. Lett., 2002, 88(1), p 015505.

    Article  CAS  Google Scholar 

  66. N. Zarrinfar, P.H. Shipway, A.R. Kennedy and A. Saidi, Carbide Stoichiometry in TiCx and Cu-TiCx Produced by Self-propagating High-Temperature Synthesis, Scr. Mater., 2002, 46(2), p 121–126.

    Article  CAS  Google Scholar 

  67. Y.X. Li, J.D. Hu, H.Y. Wang, Z.X. Guo and A.N. Chumakov, Thermodynamic and Lattice Parameter Calculation of TiCx Produced from Al-Ti-C Powders by Laser Igniting Self-propagating High-Temperature Synthesis, Mater. Sci. Eng. A STRUCT. Mater. Prop. Microstruct. Process., 2007, 458(1–2), p 235–239.

    Article  Google Scholar 

  68. Y.J. Yang, Z.H. Zheng, X. Wang, X.H. Liu, J.G. Man and J.S. Yoon, Microstructure and Tribology of TiB2 and TiB2/TiN Double-Layer Coatings, Surf. Coat. Technol., 1996, 84(1–3), p 404–408.

    Article  CAS  Google Scholar 

  69. V. Geanta, I. Voiculescu and S. Tudoran, Effects of Fe and Mn on Microstructure and Microhardness of Titanium Alloys, Rev. Chim., 2020, 71(4), p 87–94.

    Article  CAS  Google Scholar 

  70. H.C. Man, S. Zhang, F.T. Cheng and T.M. Yue, Microstructure and Formation Mechanism of In Situ Synthesized TiC/Ti Surface MMC on Ti-6Al-4V by Laser Cladding, Scr. Mater., 2001, 44(12), p 2801–2807.

    Article  CAS  Google Scholar 

  71. B.L. Bramfitt, The Effect of Carbide and Nitride Additions on the Heterogeneous Nucleation Behavior of Liquid Iron, Metall. Trans., 1970, 1(7), p 1987–1995.

    Article  CAS  Google Scholar 

  72. N. Hirosaki, S. Ogata and C. Kocer, Ab Initio Calculation of the Crystal Structure of the Lanthanide Ln2O3 Sesquioxides, J. Alloys. Compd., 2003, 351, p 31–34.

    Article  CAS  Google Scholar 

  73. S. Shimade and J. Watanabe, Kodaira, Flux Growth and Characterization of TiC Crystals, J. Mater. Sci., 1989, 24(7), p 2513–2515.

    Article  Google Scholar 

  74. S. Lartigue-Korinek, M. Walls, N. Haneche, L. Cha, L. Mazerolles and F. Bonnet, Interfaces and Defects in a Successfully Hot-Rolled Steel-Based Composite Fe-TiB2, Acta Mater., 2015, 98, p 297–305.

    Article  CAS  Google Scholar 

  75. H.H. Xiong, H.N. Zhang and J.H. Dong, Adhesion Strength and Stability of TiB2/TiC Interface in Composite Coatings by First Principles Calculation, Comput. Mater. Sci., 2017, 127, p 244–250.

    Article  CAS  Google Scholar 

  76. O. Dumas, L. Malet, B. Hary, F. Prima and S. Godet, Crystallography and Reorientation Mechanism Upon Deformation in the Martensite of an α-α’ Ti-6Al-4V Dual-Phase Microstructure Exhibiting High Work-Hardening Rate, Acta Mater., 2021, 205, p 116530.

    Article  CAS  Google Scholar 

  77. C. Leyens and M. Peters, Titanium and Titanium Alloys: Fundamentals and Applications, Wiley, Hoboken, 2003.

    Book  Google Scholar 

  78. J.F. Archard, Contact and Rubbing of Flat Surfaces, J. Appl. Phys., 1953, 24(8), p 981–988.

    Article  Google Scholar 

  79. M.N. Gardos, Magnéli Phases of Anion-Deficient Rutile as Lubricious Oxides. Part II. Tribological Behavior of Cu-Doped Polycrystalline Rutile (TinO2n-1), Tribol. Lett., 2000, 8(2–3), p 79–96.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities (Grant No. 3122018D013), the Fundamental Research Funds for the Central Universities (Grant No. 3122019069), the Tianjin Research Innovation Project for Postgraduate Students (Grant No. 2019YJSS077), the Science and Technology Innovation Fund for Postgraduate Students of the Civil Aviation University of China (Grant No. 201904).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaifeng Zhuang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuang, H., Zhang, Q. & Zhang, D. Microstructure and Tribological Properties of Ni-Based Laser-Clad Coatings by Rare Earth Modification. J Therm Spray Tech 30, 1410–1431 (2021). https://doi.org/10.1007/s11666-021-01193-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-021-01193-z

Keywords

Navigation