Skip to main content
Log in

Evolutionary Mechanisms Affecting the Multivariate Divergence in Some Myotis Species (Chiroptera, Vespertilionidae)

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Phenotypic evolutionary rates were measured for 27 craniometric characters in 12 extant OTUs from the bat genus Myotis (Chiroptera, Vespertilionidae). Squared Mahalanobis distance was used as a multivariate measure for amount of divergence, and squared Mahalanobis distance weighted by time was used as a measure for the rate of divergence. Estimates for the rates of divergence were found to be consistent with random walk hypothesis. Thus, the divergence in Myotis could be guided by random drift and mutations. The high dispersion in rate estimates suggests also a possible input of randomly fluctuating selection. The highest rates were recorded for divergence between M. myotisM. blythii species group and the other OTUs. Rates of divergence between the subspecies of M. blythii occur to be lesser than rates of divergence between the earlier diverged species, their divergence could probably be slowed down by stabilizing selection. Size-adjusted data appeared to be lesser then the initial data, and it can be concluded that both size and shape were involved in divergence of Myotis species. The skeletal characters in bats are known to be extremely conservative during long-term evolution, however, the possibility for random walk at short time interval implies that bat evolution is constrained rather ecologically and biomechanically than genetically or developmentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Afifi, A. A., & Azen, S. P. (1982). Statistical analysis: A computer oriented approach. Moscow: Mir. (in Russian).

    Google Scholar 

  • Alberch, P. (1980). Ontogenesis and morphological diversification. American Zoologist, 20, 653–667.

    Google Scholar 

  • Anderson, M. J. (2001). Permutation tests for univariate or multivariate analysis of variance and regression. Canadian Journal of Fisheries and Aquatic Sciences, 58, 626–639.

    Article  Google Scholar 

  • Anderson, T. W. (1963). Asymptotic theory for principal component analysis. Annals of Mathematical Statistics, 34, 122–148.

    Article  Google Scholar 

  • Arlettaz, R. (1996). Feeding behaviour and foraging strategy of free-living mouse-eared bats, Myotis myotis and Myotis blythii. Animal Behaviour, 51, 1–11.

    Article  Google Scholar 

  • Arlettaz, R., Ruedi, M., & Hausser, J. (1993). Ecologie trophique de deux espèces jumelles et sympatriques de chauve-souris: Myotis myotis et Myotis blythii (Chiroptera, Vespertilionidae). Premiers resultats. Mammalia, 57, 519–531.

    Article  Google Scholar 

  • Arlettaz, R., Ruedi, M., Ibañez, C., Palmeirim, J., & Hausser, J. (1997). A new perspective on the zoogeography of the sibling mouse-eared bat species Myotis myotis and Myotis blythii: Morphological, genetical and ecological evidence. Journal of Zoology (London), 242, 45–62.

    Article  Google Scholar 

  • Arnold, S. J., Bürger, R., Hohenlohe, P. A., Ajie, B. C., & Jones, A. G. (2008). Understanding the evolution and stability of the G-matrix. Evolution, 62, 2451–2461.

    Article  PubMed  Google Scholar 

  • Benda, P., & Tsytsulina, K. A. (2000). Taxonomic revision of Myotis mystacinus group (Mammalia: Chiroptera) in the Western Palearctic. Acta Societatis Zoologicae Bohemicae, 64, 331–398.

    Google Scholar 

  • Berthier, P., Excoffier, L., & Ruedi, M. (2006). Recurrent replacement of mtDNA and cryptic hybridization between two sibling bat species Myotis myotis and Myotis blythii. Proceedings of the Royal Society B, 273, 3101–3109.

    Article  CAS  PubMed  Google Scholar 

  • Bogdanowicz, W., Van Den Bussche, R. A., Gajewska, M., Postawa, T., & Harutyunyan, M. (2009). Ancient and contemporary DNA sheds light on the history of mouse-eared bats in Europe and the Caucasus. Acta Chiropterologica, 11, 289–305.

    Article  Google Scholar 

  • Carroll, R. L. (1988). Vertebrate paleontology and evolution. New York: W. H. Freeman and Company.

    Google Scholar 

  • Charlesworth, B., Lande, R., & Slatkin, M. (1982). A neo-Darwinian commentary on macroevolution. Evolution, 36, 474–498.

    Article  Google Scholar 

  • Clyde, W. C., & Gingerich, P. D. (1994). Rates of evolution in the dentition of early Eocene Cantius: Comparison of size and shape. Paleobiology, 20, 506–522.

    Google Scholar 

  • Davison, M. L. (1988). Multidimensional scaling. Moscow: Finansy i statistika (in Russian).

  • Deryabin, V. Y. (1983). Multivariate biometrics for anthropologists. Moscow: Izdatelstvo Moskovskogo universiteta (in Russian).

  • Dubois, A. (1988). Some comments on the genus concept in zoology. Monitore Zoologico Italiano (N. S.), 22, 27–44.

    Google Scholar 

  • Dyke, G. J., & van Tuinen, M. (2004). The evolutionary radiation of modern birds (Neornithes): Reconciling molecules, morphology and the fossil record. Zoological Journal of the Linnean Society, 141, 153–177.

    Article  Google Scholar 

  • Dzeverin, I. I. (1998). A unidimensional model of phenetic diversity of the Palearctic Myotis species. Biological Bulletin, 25, 206–212.

    Google Scholar 

  • Dzeverin, I. I. (2007). The regressive trend of complex phenotypic structures in neutral evolution. Vestnik Zoologii, 41, 53–69.

    Google Scholar 

  • Dzeverin, I. (2008). The stasis and possible patterns of selection in evolution of a group of related species from the bat genus Myotis (Chiroptera, Vespertilionidae). Journal of Mammalian Evolution, 15, 123–142.

    Article  Google Scholar 

  • Dzeverin, I. I., & Lashkova, E. I. (2005). An input of heterochronies to the formation of interspecific differences in wood mice, Sylvaemus (Rodentia). Zhurnal Obshchei Biologii, 66, 258–272. (in Russian, with English summary).

    CAS  PubMed  Google Scholar 

  • Dzeverin, I. I., & Strelkov, P. P. (2008). Taxonomic status of Myotis blythii (Chiroptera, Vespertilionidae) from the Altai. Zoologicheskii Zhurnal, 87, 973–982. (in Russian with English summary).

    Google Scholar 

  • Eiting, T. P., & Gunnell, G. F. (2009). Global completeness of the bat fossil record. Journal of Mammalian Evolution, 16, 151–173.

    Article  Google Scholar 

  • Estes, S., & Arnold, S. J. (2007). Resolving the paradox of stasis: Models with stabilizing selection explain evolutionary divergence on all timescales. American Naturalist, 169, 227–244.

    Article  PubMed  Google Scholar 

  • Falconer, D. S. (1985). Introduction to quantitative genetics. Moscow: Agropromizdat. (in Russian).

    Google Scholar 

  • Fenster, E. J., & Sorhannus, U. (1991). On the measurement of morphological rates of evolution: A review. Evolutionary Biology, 25, 375–410.

    Google Scholar 

  • Fenton, M. B., & Bogdanowicz, W. (2002). Relationships between external morphology and foraging behaviour: Bats in the genus Myotis. Canadian Journal of Zoology, 80, 1004–1013.

    Article  Google Scholar 

  • Findley, J. S. (1972). Phenetic relationships among bats of the genus Myotis. Systematic Zoology, 21, 31–52.

    Article  Google Scholar 

  • Garthwaite, P. H. (1996). Confidence intervals from randomization tests. Biometrics, 52, 1387–1393.

    Article  Google Scholar 

  • Ghazali, M. A. (2004). Functional interpretation of differences in the structure of masticatory apparatus of the mouse-eared bat species, Myotis myotis and Myotis blythii. Vestnik Zoologii, 38(2), 39–44. (in Ukrainian, with English summary).

    Google Scholar 

  • Ghazali, M. A. (2009). Identification of Myotis blythii and M. myotis (Chiroptera, Vespertilionidae) from Eastern Europe based on the measurements of lower teeth. Vestnik Zoologii, 43, 403–408.

    Article  Google Scholar 

  • Ghazali, M. A., & Dzeverin, I. I. (2007). Mechanisms of divergence between the lesser (Myotis blythii) and greater (Myotis myotis) mouse-eared bats (Chiroptera, Vespertilionidae): Assessment by mandibular characters. Plecotus et al., 10, 3–13. (in Russian with English summary).

    Google Scholar 

  • Gingerich, P. D. (1983). Rates of evolution: Effects of time and temporal scaling. Science, 222, 159–161.

    Article  CAS  PubMed  Google Scholar 

  • Gingerich, P. D. (1993). Quantification and comparison of evolutionary rates. American Journal of Science, 293-A, 453–478.

    Article  Google Scholar 

  • Gingerich, P. D. (2001). Rates of evolution on the time scale of the evolutionary process. Genetica, 112–113, 127–144.

    Article  PubMed  Google Scholar 

  • Gunnell, G. F., & Simmons, N. B. (2005). Fossil evidence and the origin of bats. Journal of Mammalian Evolution, 12, 209–246.

    Article  Google Scholar 

  • Hohenlohe, P. A., & Arnold, S. J. (2008). MIPoD: A hypothesis-testing framework for microevolutionary inference from patterns of divergence. American Naturalist, 171, 366–385.

    Article  PubMed  Google Scholar 

  • Hoofer, S. R., Van Den Bussche, R. A. (2003). Molecular phylogenetics of the chiropteran family Vespertilionidae. Acta Chiropterologica, 5(Suppl.), 1–63.

    Google Scholar 

  • Horáček, I. (1985). Population ecology of Myotis myotis in central Bohemia. Acta Universitatis Carolinae-Biologica 1981, 8, 161–267.

    Google Scholar 

  • Horáček, I., & Hanák, V. (1983–1984). Comments on the systematics and phylogeny of Myotis nattereri (Kuhl, 1818). Myotis, 21–22, 20–29.

    Google Scholar 

  • Housworth, E. A., Martins, E. P., & Lynch, M. (2004). The phylogenetic mixed model. American Naturalist, 163, 84–96.

    Article  PubMed  Google Scholar 

  • Hunt, G. (2007). The relative importance of directional change, random walks, and stasis in the evolution of fossil lineages. Proceedings of the National Academy of Sciences of the United States of America, 104, 18404–18408.

    Article  CAS  PubMed  Google Scholar 

  • Jolicoeur, P. (1963). The multivariate generalization of the allometry equation. Biometrics, 19, 497–499.

    Article  Google Scholar 

  • Jolicoeur, P. (1984). Principal components, factor analysis, and multivariate allometry: A small-sample direction test. Biometrics, 40, 685–690.

    Article  Google Scholar 

  • Jones, G., Parsons, S., Zhang, S., Stadelmann, B., Benda, P., & Ruedi, M. (2006). Echolocation calls, wing shape, diet and phylogenetic diagnosis of the endemic Chinese bat Myotis pequinius. Acta Chiropterologica, 8, 451–463.

    Article  Google Scholar 

  • Kimura, M. (1965). A stochastic model concerning the maintenance of genetic variability in quantitative characters. Proceedings of the National Academy of Sciences of the United States of America, 54, 731–736.

    Article  CAS  PubMed  Google Scholar 

  • Kuzyakin, A. P. (1950). The bats: Systematics, way of life and the utility for agriculture and forestry. Moscow: Sovetskaya nauka. (in Russian).

    Google Scholar 

  • Lahti, D. C., Johnson, N. A., Ajie, B. C., Otto, S. P., Hendry, A. P., Blumstein, D. T., et al. (2009). Relaxed selection in the wild. Trends in Ecology & Evolution, 24, 487–496.

    Article  Google Scholar 

  • Lande, R. (1976). Natural selection and random genetic drift in phenotypic evolution. Evolution, 30, 314–334.

    Article  Google Scholar 

  • Lande, R. (1977). Statistical tests for natural selection on quantitative characters. Evolution, 31, 442–444.

    Article  Google Scholar 

  • Lande, R. (1979). Quantitative genetic analysis of multivariate evolution, applied to brain:body size allometry. Evolution, 33, 402–416.

    Article  Google Scholar 

  • Lande, R. (1980). The genetic covariance between characters maintained by pleiotropic mutations. Genetics, 94, 203–215.

    CAS  PubMed  Google Scholar 

  • Lande, R., & Arnold, S. J. (1983). The measurement of selection on correlated characters. Evolution, 37, 1210–1226.

    Article  Google Scholar 

  • Lapointe, F.-J., & Legendre, P. (1990). A statistical framework to test the consensus of two nested classifications. Systematic Zoology, 39, 1–13.

    Article  Google Scholar 

  • Legendre, P., Lapointe, F.-J., & Casgrain, P. (1994). Modeling brain evolution from behavior: A permutational regression approach. Evolution, 48, 1487–1499.

    Article  Google Scholar 

  • Lemen, C. A., & Freeman, P. W. (1984). The genus: A macroevolutionary problem. Evolution, 38, 1219–1237.

    Article  Google Scholar 

  • Lynch, M. (1990). The rate of morphological evolution in mammals from the standpoint of the neutral expectation. American Naturalist, 136, 727–741.

    Article  Google Scholar 

  • Lynch, M. (1991). Methods for the analysis of comparative data in evolutionary biology. Evolution, 45, 1065–1080.

    Article  Google Scholar 

  • Lynch, M., & Hill, W. G. (1986). Phenotypic evolution by neutral mutation. Evolution, 40, 915–935.

    Article  Google Scholar 

  • Manly, B. F. J. (1985). The statistics of natural selection on animal populations. London; New York: Chapman and Hall.

    Google Scholar 

  • Marroig, G., & Cheverud, J. M. (2001). A comparison of phenotypic variation and covariation patterns and the role of phylogeny, ecology, and ontogeny during cranial evolution of New World monkeys. Evolution, 55, 2576–2600.

    CAS  PubMed  Google Scholar 

  • Mayer, F., & von Helversen, O. (2001). Cryptic diversity in European bats. Proceedings of the Royal Society London B, 268, 1825–1832.

    Article  CAS  Google Scholar 

  • Maynard Smith, J., Burian, R., Kauffman, S., Alberch, P., Campbell, J., Goodwin, B., et al. (1985). Developmental constraints and evolution. The Quarterly Review of Biology, 60, 265–287.

    Article  Google Scholar 

  • Phillips, P. C., & Arnold, S. J. (1989). Visualizing multivariate selection. Evolution, 43, 1209–1222.

    Article  Google Scholar 

  • Polly, P. D. (2002). Phylogenetic tests for differences in shape and the importance of divergence times: Eldredge’s enigma explored. In N. MacLeod & P. L. Forey (Eds.), Morphology, shape and phylogeny (pp. 220–246). London: Taylor and Francis.

    Google Scholar 

  • Polly, P. D. (2004). On the simulation of the evolution of morphological shape: Multivariate shape under selection and drift. Palaeontol Electronica 7.2.7A, 28 pp. http://palaeo-electronica.org/paleo/2004_2/evo/issue2_04.htm.

  • Polly, P. D. (2005). Development and phenotypic correlations: The evolution of tooth shape in Sorex araneus. Evolution & Development, 7, 29–41.

    Article  Google Scholar 

  • Polly, P. D. (2008). Developmental dynamics and G-matrices: Can morphometric spaces be used to model phenotypic evolution? Evolutionary Biology, 35, 83–96.

    Article  Google Scholar 

  • Porto, A., Oliveira, F. B., Shirai, L. T., De Conto, V., & Marroig, G. (2009). The evolution of modularity in the mammalian skull I: Morphological integration patterns and magnitudes. Evolutionary Biology, 36, 118–135.

    Article  Google Scholar 

  • Rohlf, F. J., & Bookstein, F. L. (1987). A comment on shearing as a method for “size correction”. Systematic Zoology, 36, 356–367.

    Article  Google Scholar 

  • Ruedi, M., & Mayer, F. (2001). Molecular systematics of bats of the genus Myotis (Vespertilionidae) suggests deterministic ecomorphological convergences. Molecular Phylogenetics and Evolution, 21, 436–448.

    Article  CAS  PubMed  Google Scholar 

  • Schmalhausen, I. I. (1939). Trends and regularities in evolutionary process. Moscow; Leningrad: Izdatelstvo AN SSSR. (in Russian).

    Google Scholar 

  • Simpson, G. G. (1944). Tempo and mode in evolution. New York: Columbia University Press.

    Google Scholar 

  • Stadelmann, B., Jacobs, D. S., Schoeman, C., & Ruedi, M. (2004). Phylogeny of African Myotis bats (Chiroptera, Vespertilionidae) inferred from cytochrome b sequences. Acta Chiropterologica, 6, 177–192.

    Google Scholar 

  • Stadelmann, B., Lin, L.-K., Kunz, T. H., & Ruedi, M. (2007). Molecular phylogeny of New World Myotis (Chiroptera, Vespertilionidae) inferred from mitochondrial and nuclear DNA genes. Molecular Phylogenetics and Evolution, 43, 32–48.

    Article  CAS  PubMed  Google Scholar 

  • Strelkov, P. P. (1972). Myotis blythi (Tomes, 1857): Distribution, geographical variability and differences from Myotis myotis (Borkhausen, 1797). Acta Theriologica, 17, 355–380. [In Russian, with English summary].

    Google Scholar 

  • Strelkov, P. P. (1983). Myotis mystacinus and Myotis brandti in the USSR and interrelations of these species. Part 2. Zoologicheskii Zhurnal, 62, 259–271. [In Russian with English summary].

    Google Scholar 

  • Tate, G. H. H. (1941). A review of the genus Myotis (Chiroptera) of Eurasia, with special reference to species occuring in the East Indies. Bulletin of the American Museum of Natural History, 78, 537–565.

    Google Scholar 

  • Turelli, M., Gillespie, J. H., & Lande, R. (1988). Rate tests for selection on quantitative characters during macroevolution and microevolution. Evolution, 42, 1085–1089.

    Article  Google Scholar 

  • von Helversen, O., Heller, K.-G., Mayer, F., Nemeth, A., Volleth, M., & Gombkötö, P. (2001). Cryptic mammalian species: A new species of whiskered bat (Myotis alcathoe n. sp.) in Europe. Naturwissenschaften, 88, 217–223.

    Article  Google Scholar 

  • Willis, J. H., Coyne, J. A., & Kirkpatrick, M. (1991). Can one predict the evolution of quantitative characters without genetics? Evolution, 45, 441–444.

    Article  Google Scholar 

Download references

Acknowledgments

We thank the curators and staffs of the zoological museums, who gave an opportunity to work with collections. We are grateful to V. M. Tytar, P. P. Strelkov, and I. K. Rakhmatulina for help in preparation of our research. Thanks also are due to the reviewers for valuable comments, suggestions and criticisms that improved the paper. M. J. Anderson, S. J. Arnold, W. Bogdanowicz, T. P. Eiting, P. H. Gartwaite, S. R. Hoofer, I. Horáček, E. A. Housworth, P. Jolicoeur, R. Lande, M. Macholán, B. F. J. Manly, P. D. Polly kindly presented copies of books and papers hardly accessible in Eastern Europe.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Dzeverin.

Appendices

Appendices

Appendix A. List of the Specimens Examined by the Authors

Myotis brandtii

ZINR 35063, 40727, 41669, 69041, 69043; ZMMU 117026.

Myotis emarginatus

NMNH 270/11; ZMMU 21535, 42775, 43760–43762, 43764.

Myotis dasycneme

ZINR 38540; ZMMU 10494, 13756–13759, 13764, 13766–13768, 13770, 13771, 15453, 15459–15463, 15465, 15468, 15611, 15613, 15614, 15621, 15627–15629, 15631, 15633, 15639, 15640, 15642, 15643, 29360, 29371, 29406, 29408–29410, 29412, 29418, 29419, 29421, 29423, 83991, 104484–104487, 104490–104492, 104494–104496, 104798, 135841.

Myotis capaccinii

ZINR 35045, 35048, 48035.

Myotis daubentonii

NMNH 1755/6, 2608/7; VDMU 594; ZINR 33469, 38802, 55691.

Myotis bechsteinii

NMNH 9558/1; ZMKU 2859.

Myotis bombinus

ZINR 5150; ZMMU 104379.

Myotis nattereri

IZA 610; VDMU 199; ZINR 55695, 46638; ZMMU 83995.

Myotis blythii blythii

NMNH 2617/33; ZINR 62131, 62133, 62134, 62136, 62137, 62139–62143, 62145–62148; ZMKU 3842, 3844; ZMMU 71109, 71111, 71113, 83985, 83987, 94711–94714, 94716, 100134–100136, 100139, 100141–100149, 100153, 100155–100158, 100164–100167, 100170–100172, 100174, 100176, 100177, 100179, 100180, 100182, 100184–100188, 100191, 100193, 100408–100410, 100413, 100414, 100416–100419, 100421, 100423, 100425, 100428, 100432, 100434, 100435, 100437–100443, 100445–100449, 100452, 111843, 150329.

Myotis blythii omari

IZA 177–183, 185, 186, 188, 207, 293, 294, 296, 297, 299, 300, 301, 303, 306, 309, 310, 313, 315, 316, 318, 319, 325, 326, 328–331, 333, 334, 339, 351, 361; NMNH 840/2; TCH 1/1, 2/1, 2/2; VDMU 2257, 2260, 2262; ZINR 11227, 11227bis, 11243, 11244, 11257, 11276, 11289, 11293, 11325, 11330, 35055–35057, 59565, 59569, 63906, 63908–63914, 63922, 63925; ZMMU 7818, 7819, 7822, 12534, 12535, 29207, 29212, 29275, 40912, 46603, 46605, 46606, 46893, 83986, 83988, 83989, 101048, 101050–101052, 101054, 102394–102396, 102398–102400, 102402, 102403, 102405, 105054, 135840.

Myotis blythii oxygnathus

NMNH 200/6, 201/7, 204/10, 205/11, 207/13, 208/14, 209/15, 211/17, 213/19, 214/20, 216/22, 220/26, 221/27, 222/28, 839/1, 5668/45, 5670/43, 5672/45; ZINR 35050–35053, 48053, 48055–48057, 55662, 55669, 55672, 55673; ZMKU 1830, 1839, 1844, 1848, 1850, 1873, 1881, 1885, 1890, 1894, 1895, 4888, 4890, 4892–4895; ZMMU 74647, 83984, 100759, 100760, 100762, 100765, 100768, 100773, 100775, 100776, 100782–100786, 100791, 100793, 100795–100797, 100799, 100801–100803, 101031, 101032, 101034, 101035, 101038.

Myotis myotis

NMNH 230/4, 233/7, 243/17, 245/19, 247/21, 249/23, 841/1, 2615/25, 2616/26, 4302/24; ZMKU 1897–1905; ZMMU 49163, 74649, 83990, 103902, 103905, 103910; ZINR 35042, 35043, 35044, 48062–48066.

Collections acronyms: Institute of Zoology of the National Academy of Sciences of Azerbaijan, Baku, Azerbaijan (IZA); National Museum of Natural History of the National Academy of Sciences of Ukraine, Kiev, Ukraine (NMNH); Tchernogolovka biological station of Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Moscow region, Russia (TCH); Department of Vertebrate Zoology of Moscow University, Moscow, Russia (VDMU); Zoological Institute of the Russian Academy of Science, St. Petersburg, Russia (ZINR); Zoological Museum of Kiev University, Kiev, Ukraine (ZMKU); Zoological Museum of Moscow University, Moscow, Russia (ZMMU).

Appendix B: Craniometric Characters

Cross-Sectional Measurements

  1. 1.

    Maximum distance between the coronoid processes of the mandible.

  2. 2.

    Maximum distance between the condyloid processes of the mandible.

  3. 3.

    Maximum distance between the angular processes of the mandible.

  4. 4.

    Breadth of the braincase.

  5. 5.

    Zygomatic breadth at the widest point.

  6. 6.

    Minimum interorbital breadth.

  7. 7.

    M3–M3 breadth.

Paired longitudinal measurements

  1. 8.

    Greatest length of the mandible.

  2. 9.

    Length of the mandibular toothrow, C1–M3.

  3. 10.

    Distance between C1 and the tip of the coronoid process.

  4. 11.

    Distance between C1 and the condyloid process.

  5. 12.

    Distance between C1 and the angular process.

  6. 13.

    Coronoid angular distance.

  7. 14.

    General length of the skull.

  8. 15.

    Braincase length.

  9. 16.

    Condylobasal length of the skull.

  10. 17.

    Length of the maxillary toothrow, C1–M3.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dzeverin, I., Ghazali, M. Evolutionary Mechanisms Affecting the Multivariate Divergence in Some Myotis Species (Chiroptera, Vespertilionidae). Evol Biol 37, 100–112 (2010). https://doi.org/10.1007/s11692-010-9086-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-010-9086-3

Keywords

Navigation