Skip to main content
Log in

Enhanced Negative Regulation of the DHH Signaling Pathway as a Potential Mechanism of Ascrotal Testes in Laurasiatherians

  • Research Article
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Unsuccessful descent of testes in humans and other scrotal mammals can result in cryptorchidism, consequent abnormalities and a high risk of malignancy. However, many male adult mammals possessing natural ascrotal testes are as viable and healthy as other scrotal mammals. This study performed an evolutionary analysis on the desert hedgehog (DHH) signaling pathway, an important regulator for testicular development, mainly in laurasiatherians. Significant positive selection, accelerated evolutionary rates, and specific amino acid substitutions were identified in ascrotal species, some of which caused radical changes in physicochemical and biological properties. Considering that most signs of positive selection were identified in genes responsible for or related to negative regulation, we suggest that the enhanced negative regulation of the DHH signaling pathway drives, at least in part, the evolution of ascrotal testes in laurasiatherians and other mammals. This study could provide some novel insights into the evolution of natural healthy ‘cryptorchidism’ in mammals and into the convergent molecular evolution of the complex trait.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article and its supplementary information files.

References

  • Adzhubei, I., Schmidt, S., Peshkin, L., Ramensky, V., Gerasimova, A., Bork, P., Kondrashov, A. S., & Sunvaev, S. R. (2010). A method and server for predicting damaging missense mutations. Nature Methods, 7(4), 248–249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asadi, S., Amjadi, H., & Jamali, M. (2019). The role of genetics mutations in genes rab23 & megf8 in carpenter syndrome. Journal of Bioences, 3(5), 1–8.

    Google Scholar 

  • Barsoum, I., Bingham, N. C., Parker, K. L., Jorgensen, J. S., & Yao, H. H. (2009). Activation of the Hedgehog pathway in the mouse fetal ovary leads to ectopic appearance of fetal Leydig cells and female pseudohermaphroditism. Developmental Biology, 329(1), 96–103.

    Article  CAS  PubMed  Google Scholar 

  • Barsoum, I., & Yao, H. H. (2010). Fetal Leydig cells: Progenitor cell maintenance and differentiation. Journal of Andrology, 31(1), 11–15.

    Article  CAS  PubMed  Google Scholar 

  • Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series b-Methodological, 57(1), 289–300.

    Google Scholar 

  • Berens, A. J., Hunt, J. H., & Toth, A. L. (2015). Comparative transcriptomics of convergent evolution: Different genes but conserved pathways underlie caste phenotypes across lineages of eusocial insects. Molecular Biology and Evolution, 32(3), 690–703.

    Article  CAS  PubMed  Google Scholar 

  • Blair, H. J., Tompson, S. W., Liu, Y., Campbell, J., Macarthur, K., Ponting, C. P., Ruiz-Perez, V. L., & Goodship, J. A. (2011). Evc2 is a positive modulator of Hedgehog signalling that interacts with Evc at the cilia membrane and is also found in the nucleus. BMC Biology, 9(1), 14–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canto, P., Soderlund, D., Reyes, E., & Mendez, J. P. (2004). Mutations in the desert hedgehog (DHH) gene in patients with 46, XY complete pure gonadal dysgenesis. The Journal of Clinical Endocrinology and Metabolism, 89(9), 4480–4483.

    Article  CAS  PubMed  Google Scholar 

  • Canto, P., Vilchis, F., Soderlund, D., Reyes, E., & Mendez, J. P. (2006). A heterozygous mutation in the desert hedgehog gene in patients with mixed gonadal dysgenesis. Molecular Human Reproduction, 11(11), 833–836.

    Article  Google Scholar 

  • Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution, 17(4), 540–552.

    Article  CAS  PubMed  Google Scholar 

  • Choi, Y., Sims, G. E., Murphy, S. M., Miller, J. R., & Chan, A. P. (2012). Predicting the functional effect of amino acid substitutions and indels. PLOS ONE, 7(10), e46688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christ, A., Herzog, K., & Willnow, T. E. (2016). LRP2, an auxiliary receptor that controls sonic hedgehog signaling in development and disease. Developmental Dynamics, 245(5), 569–579.

    Article  CAS  PubMed  Google Scholar 

  • Clark, A. M., Garland, K. K., & Russell, L. D. (2000). Desert hedgehog (Dhh) gene is required in the mouse testis for formation of adult-type leywdig cells and normal development of peritubular cells and seminiferous tubules. Biology of Reproduction, 63(6), 1825–1838.

    Article  CAS  PubMed  Google Scholar 

  • Das, D. K., Sanghavi, D., Gawde, H. M., Idiculathomas, S., & Vasudevan, L. (2011). Novel homozygous mutations in desert hedgehog gene in patients with 46,XY complete gonadal dysgenesis and prediction of its structural and functional implications by computational methods. European Journal of Medical Genetics, 54(6), e529–e534.

    Article  PubMed  Google Scholar 

  • Davies, K. T., Bennett, N. C., Faulkes, C. G., & Rossiter, S. J. (2018). Limited evidence for parallel molecular adaptations associated with the subterranean niche in mammals: A comparative study of three superorders. Molecular Biology and Evolution, 35(10), 2544–2559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dormoy, V., Danilin, S., Lindner, V., Thomas, L., Rothhut, S., Coquard, C., Helwig, J., Jacqmin, D., Lang, H., & Massfelder, T. (2009). The sonic hedgehog signaling pathway is reactivated in human renal cell carcinoma and plays orchestral role in tumor growth. Molecular Cancer, 8(1), 123–123.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • El Houate, B., Rouba, H., Sibai, H., Barakat, A., Chafik, A., Imken, L., Bogatcheva, N. V., Feng, S., Agoulnik, A. I., & McElreavey, K. (2007). Novel mutations involving the INSL3 gene associated with cryptorchidism. The Journal of urology, 177(5), 1947–1951.

    Article  PubMed  CAS  Google Scholar 

  • Finco, I., Lapensee, C. R., Krill, K. T., & Hammer, G. D. (2015). Hedgehog signaling and steroidogenesis. Annual Review of Physiology, 77(1), 105–129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foote, A. D., Liu, Y., Thomas, G. W. C., Vinař, T., Alföldi, J., Deng, J., Dugan, S., van Elk, C. E., Hunter, M. E., Joshi, V., Khan, Z., Kovar, C., Lee, S. L., Lindblad-Toh, K., Mancia, A., Nielsen, R., Qin, X., Qu, J., Raney, B. J., … Gibbs, R. A. (2015). Convergent evolution of the genomes of marine mammals. Nature genetics, 47(3), 272–275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foresta, C., Zuccarello, D., Garolla, A., & Ferlin, A. (2008). Role of hormones, genes, and environment in human cryptorchidism. Endocrine Reviews, 29(5), 560–580.

    Article  CAS  PubMed  Google Scholar 

  • Franco, H. L., & Yao, H. H. (2012). Sex and hedgehog: Roles of genes in the hedgehog signaling pathway in mammalian sexual differentiation. Chromosome Research, 20(1), 247–258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haeussler, M., Zweig, A. S., Tyner, C., Speir, M. L., Rosenbloom, K. R., Raney, B. J., Lee, C. M., Lee, B. T., Hinrichs, A. S., Gonzalez, J. N., Gibson, D., Diekhans, M., Clawson, H., Casper, J., Barber, G. P., Haussler, D., Kuhn, R. M., & Kent, W. J. (2019). The UCSC genome browser database: 2019 update. Nucleic Acids Research, 47, D853–D858.

    Article  CAS  PubMed  Google Scholar 

  • Ha, H., Dong, H., Chen, Q., Gao, Y., Li, J., Li, W., Dang, R., & Lei, C. (2020). Transcriptomic analysis of testicular gene expression in normal and cryptorchid horses. Animal, 10(1), 102.

    Article  Google Scholar 

  • Hutson, J. M., & Hasthorpe, S. (2005). Testicular descent and cryptorchidism: the state of the art in 2004. Journal of Pediatric Surgery, 40(2), 297–302.

    Article  PubMed  Google Scholar 

  • Hutson, J. M., Thorup, J. M., & Beasley, S. W. (1992). Descent of the testis. Edward Arnold.

    Google Scholar 

  • Ivell, R., & Hartung, S. (2003). The molecular basis of cryptorchidism. Molecular Human Reproduction, 9(4), 175–181.

    Article  CAS  PubMed  Google Scholar 

  • Jia, J., Tong, C., Wang, B., Luo, L., & Jiang, J. (2004). Hedgehog signalling activity of smoothened requires phosphorylation by protein kinase A and casein kinase I. Nature, 432(7020), 1045–1050.

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa, M., & Goto, S. (2000). KEGG: Kyoto encyclopaedia of genes and genomes. Nucleic Acids Research, 28(1), 27–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawai, Y., Noguchi, J., Akiyama, K., Takeno, Y., Fujiwara, Y., Kajita, S., Tsuji, T., Kikuchi, K., Kaneko, H., & Kunieda, T. (2011). A missense mutation of the Dhh gene is associated with male pseudohermaphroditic rats showing impaired Leydig cell development. Reproduction, 141(2), 217–225.

    Article  CAS  PubMed  Google Scholar 

  • Kleisner, K., Ivell, R., & Flegr, J. (2010). The evolutionary history of testicular externalization and the origin of the scrotum. Journal of Biosciences, 35(1), 27–37.

    Article  PubMed  Google Scholar 

  • Kumar, S., Stecher, G., Suleski, M., & Hedges, S. B. (2017). TimeTree: A resource for timelines, timetrees, and divergence times. Molecular Biology and Evolution, 34(7), 1812–1819.

    Article  CAS  PubMed  Google Scholar 

  • Kuwabara, P. E., Lee, M., Schedl, T., & Jefferis, G. S. (2000). A C. elegans patched gene, ptc-1, functions in germ-line cytokinesis. Genes & Development, 14(15), 1933–1944.

    CAS  Google Scholar 

  • Li, X., Wang, Z., Jiang, Z., Guo, J., Zhang, Y., Li, C., Chung, J., Folmer, J., Liu, J., Lian, Q., Ge, R., Zirkin, B. R., & Chen, H. (2016). Regulation of seminiferous tubule-associated stem Leydig cells in adult rat testes. Proceedings of the National Academy of Sciences of the United States of America, 113(10), 2666–2671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Y., Liu, Z., Shi, P., & Zhang, J. (2010). The hearing gene Prestin unites echolocating bats and whales. Current Biology, 20(2), R55–R56.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., Cotton, J. A., Shen, B., Han, X., Rossiter, S. J., & Zhang, S. (2010a). Convergent sequence evolution between echolocating bats and dolphins. Current Biology, 20(2), R53–R54.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., Cotton, J., Shen, B., Han, X., Rossiter, S. J., & Zhang, S. (2010). Convergent sequence evolution between echolocating bats and dolphins. Current Biology, 20(2), R53–R54.

    Article  CAS  PubMed  Google Scholar 

  • Lovegrove, B. G. (2014). Cool sperm: Why some placental mammals have a scrotum. Journal of Evolutionary Biology, 27(5), 801–814.

    Article  CAS  PubMed  Google Scholar 

  • Löytynoja, A., & Goldman, N. (2005). An algorithm for progressive multiple alignment of sequences with insertions. Proceedings of the National Academy of Sciences of the United States of America, 102(30), 10557–10562.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marcotullio, L. D., Ferretti, E., Smaele, E. D., Screpanti, I., & Gulino, A. (2006). Suppressors of hedgehog signaling. Molecular Neurobiology, 34, 193–204.

    Article  PubMed  Google Scholar 

  • Martin, L. J. (2016). Cell interactions and genetic regulation that contribute to testicular Leydig cell development and differentiation. Molecular Reproduction and Development, 83(6), 470–487.

    Article  CAS  PubMed  Google Scholar 

  • Moore, C. R. (1926). The Biology of the mammalian testis and scrotum. The Quarterly Review of Biology, 1(1), 4–50.

    Article  Google Scholar 

  • Niedzielski, J., Oszukowska, E., & Slowikowskahilczer, J. (2016). Undescended testis—current trends and guidelines: A review of the literature. Archives of Medical Science, 12(3), 667–677.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nüsslein-Volhard, C., & Wieschaus, E. F. (1980). Mutations affecting segment number and polarity in Drosophila. Nature, 287(5785), 795–801.

    Article  PubMed  Google Scholar 

  • Pusapati, G. V., Kong, J. H., Patel, B. B., Krishnan, A., Sagner, A., Kinnebrew, M., & BriscoeAravindRohatgi, J. L. R. (2018). CRISPR screens uncover genes that regulate target cell sensitivity to the Morphogen sonic Hedgehog. Developmental Cell, 44(1), 271–271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raducu, M., Fung, E., Serres, S., Infante, P., Barberis, A., Fischer, R., Bristow, C., Thézénas, M., Finta, C., Christianson, J. C., Buffa, F. M., Kessler, B. M., Sibson, N. R., Marcotullio, L. D., Toftgård, R., & D’Angiolella, V. (2016). SCF (Fbxl17) ubiquitylation of Sufu regulates Hedgehog signaling and medulloblastoma development. The EMBO Journal, 35(13), 1400–1416.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodprasert, W., Virtanen, H. E., Makela, J., & Toppari, J. (2019). Hypogonadism and cryptorchidism. Frontiers in Endocrinology. https://doi.org/10.3389/fendo.2019.00906

    Article  PubMed  Google Scholar 

  • Rothacker, K., Ayers, K. L., Tang, D., Joshi, K., Den Bergen, J. V., Robevska, G., Samnakav, N., Nagarajan, L., Francis, K., Sinclair, A. H., & Choong, C. S. (2018). A novel, homozygous mutation in desert hedgehog (DHH) in a 46, XY patient with dysgenetic testes presenting with primary amenorrhoea: A case report. International Journal of Pediatric Endocrinology, 2018(1), 2–2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schwarz, J. M., Cooper, D. N., Schuelke, M., & Seelow, D. (2014). MutationTaster2: mutation prediction for the deep-sequencing age. Nature Methods, 11(4), 361–362.

    Article  CAS  PubMed  Google Scholar 

  • Scornavacca, C., Belkhir, K., Lopez, J., Dernat, R., Delsuc, F., Douzery, E. J., & Ranwez, V. (2019). OrthoMaM v10: Scaling-up orthologous coding sequence and exon alignments with more than one hundred mammalian genomes. Molecular Biology and Evolution, 36(4), 861–862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shoshani, J., & Mckenna, M. C. (1998). Higher taxonomic relationships among extant mammals based on morphology, with selected comparisons of results from molecular data. Molecular Phylogenetics and Evolution, 9(3), 572–584.

    Article  CAS  PubMed  Google Scholar 

  • Stern, D. L. (2013). The genetic causes of convergent evolution. Nature Reviews Genetics, 14(11), 751–764.

    Article  CAS  PubMed  Google Scholar 

  • Storz, J. F. (2016). Causes of molecular convergence and parallelism in protein evolution. Nature Reviews Genetics, 17(4), 239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szczepny, A., Hime, G. R., & Loveland, K. L. (2006). Expression of hedgehog signalling components in adult mouse testis. Developmental Dynamics, 235(11), 3063–3070.

    Article  CAS  PubMed  Google Scholar 

  • Tajouri, A., Kharrat, M., Hizem, S., Zaghdoudi, H., Mrad, R., Simicschleiche, G., Kaiser, F. J., Hiort, O., & Werner, R. (2018). In vitro functional characterization of the novel DHH mutations p.(Asn337Lysfs*24) and p.(Glu212Lys) associated with gonadal dysgenesis. Human Mutation, 39(12), 2097–2109.

    Article  CAS  PubMed  Google Scholar 

  • Twigg, S. R., Lloyd, D., Jenkins, D., Elçioglu, N. E., Cooper, C. D., Al-Sannaa, N., Annagür, A., Gillessen-Kaesbach, G., Hüning, I., Knight, S. J., Goodship, J. A., Keavney, B. D., Beales, P. L., Gileadi, O., McGowan, S. J., & Wilkie, A. O. M. (2012). Mutations in multidomain protein MEGF8 identify a carpenter syndrome subtype associated with defective lateralization. American Journal of Human Genetics, 91(5), 897–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umehara, F., Tate, G., Itoh, K., Yamaguchi, N., Douchi, T., Mitsuya, T., & Osame, M. (2000). A novel mutation of desert hedgehog in a patient with 46,XY partial gonadal dysgenesis accompanied by minifascicular neuropathy. American Journal of Human Genetics, 67(5), 1302–1305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urh, K., Kolenc, Ž, Hrovat, M., Svet, L., Dovc, P., & Kunej, T. (2018). Molecular mechanisms of syndromic cryptorchidism: Data synthesis of 50 studies and visualization of gene-disease network. Frontiers in Endocrinology. https://doi.org/10.3389/fendo.2018.00425

    Article  PubMed  PubMed Central  Google Scholar 

  • Varjosalo, M., & Taipale, J. (2008). Hedgehog: Functions and mechanisms. Genes & Development, 22(18), 2454–2472.

    Article  CAS  Google Scholar 

  • Venselaar, H., Beek, T. A., Kuipers, R., Hekkelman, M. L., & Vriend, G. (2010). Protein structure analysis of mutations causing inheritable diseases. An e-Science approach with life scientist friendly interfaces. BMC Bioinformatics, 11(1), 548–548.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Werne, R., Merz, H., Birnbaum, W., Marshall, L., Schroder, T., Reiz, B., Kayran, J. M., Baumer, T., Capetian, P., & Hiort, O. (2015). 46,XY gonadal dysgenesis due to a homozygous mutation in desert hedgehog (DHH) identified by exome sequencing. The Journal of Clinical Endocrinology and Metabolism, 100(7), 1022–1029.

    Article  Google Scholar 

  • Wilhelm, D., & Bagheri-Fam, S. (2019). Genes and gene defects affecting gonadal development and sex determination. In I. Huhtaniemi & L. Martini (Eds.), Encyclopedia of Endocrine Diseases (2nd ed., pp. 695–703). Academic Press.

  • Williams, M. P., & Hutson, J. M. (1991). The phylogeny of testicular descent. Pediatric Surgery International, 6(3), 162–166.

    Google Scholar 

  • Yang, Z. (2007). PAML 4: Phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution, 24(8), 1586–1591.

    Article  CAS  PubMed  Google Scholar 

  • Yao, H. H., Whoriskey, W., & Capel, B. (2002). Desert hedgehog/patched 1 signaling specifies fetal Leydig cell fate in testis organogenesis. Genes & Development, 16(11), 1433–1440.

    Article  CAS  Google Scholar 

  • Zhang, J. (2003). Parallel functional changes in the digestive RNases of ruminants and colobines by divergent amino acid substitutions. Molecular Biology and Evolution, 20(8), 1310–1317.

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann, S., Steding, G., Emmen, J. M., Brinkmann, A. O., Nayernia, K., Holstein, A. F., Engel, W., & Adham, I. M. (1999). Targeted disruption of the Insl3 gene causes bilateral cryptorchidism. Molecular Endocrinology, 13(5), 681–691.

    Article  CAS  PubMed  Google Scholar 

  • Zou, Z., & Zhang, J. (2015). Are convergent and parallel amino acid substitutions in protein evolution more prevalent than neutral expectations. Molecular Biology and Evolution, 32(8), 2085–2096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Mr. Xinrong Xu, Dr. Lei Shan, Dr. Di Sun, Mr. Weijian Guo due to their suggestion and technical support during this study.

Funding

This study was financially supported by the National Natural Science Foundation of China to WR (grant number 31872219 and 31370401) and SX (grant number 31570379); the Key Project of National Natural Science of China to GY (grant number 31630071); the National Key Programme of Research and Development, Ministry of Science and Technology to GY and SX (Grant number 2016YFC0503200); the Priority Academic Program Development of Jiangsu Higher Education Institutions (RAPD) to GY and SX.

Author information

Authors and Affiliations

Authors

Contributions

GY, WR and SX conceived the project. SC designed and performed the evolutionary analyses. YY helped with analysis and organized the supplementary files. SC wrote the manuscript. GY and RT improved the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Wenhua Ren.

Ethics declarations

Conflicts of interest

Not applicable.

Supplementary Information

Below is the link to the electronic supplementary material.

11692_2021_9542_MOESM1_ESM.tif

Supplementary file1 Figure S1. Specific AA substitutions in MEGF8 in ascrotal cetaceans shown in mammal dataset.pdf (TIF 6779 kb)

11692_2021_9542_MOESM2_ESM.tif

Supplementary file2 Figure S2. Specific AA substitutions in MEGF8 in ascrotal eulipotyphlans shown in mammal dataset.pdf (TIF 3948 kb)

11692_2021_9542_MOESM3_ESM.tif

Supplementary file3 Figure S3. Specific AA substitutions in MEGF8 in ascrotal megabats shown in mammal dataset.pdf (TIF 7444 kb)

11692_2021_9542_MOESM4_ESM.tif

Supplementary file4 Figure S4. Specific AA substitutions in MEGF8 in ascrotal pinnipeds shown in mammal dataset.pdf (TIF 5189 kb)

11692_2021_9542_MOESM5_ESM.tif

Supplementary file5 Figure S5. Specific AA substitutions in MEGF8 in ascrotal rhinoceros shown in mammal dataset.pdf (TIF 6687 kb)

11692_2021_9542_MOESM6_ESM.tif

Supplementary file6 Figure S6. Ascrotal laurasiatherian specific substitutions in DHH in mammal dataset.pdf (TIF 4599 kb)

Supplementary file7 Table S1. Representative laurasiatherians in this study.xlsx (XLSX 11 kb)

Supplementary file8 Table S2. DHH signaling pathway genes in this study.xlsx (XLSX 10 kb)

Supplementary file9 Table S3. REGs in the DHH signaling pathway in scrotal laurasiatherians.xlsx (XLSX 28 kb)

Supplementary file10 Table S4. PSGs in the DHH signaling pathway in laurasiatherians.docx (DOCX 103 kb)

11692_2021_9542_MOESM11_ESM.docx

Supplementary file11 Table S5. PSG in the DHH signaling pathway across combined branches of ascrotal laurasiatherians.docx (DOCX 40 kb)

Supplementary file12 Table S6. PSG MEGF8 across combined asctoal mammals.xlsx (XLSX 25 kb)

Supplementary file13 Table S7. Convergent DHH signaling pathway genes in laurasiatherians.xlsx (XLSX 26 kb)

11692_2021_9542_MOESM14_ESM.xlsx

Supplementary file14 Table S8. Number of specific substitutions in DHH signaling pathway genes in ascrotal laurasiatherians.xlsx (XLSX 45 kb)

11692_2021_9542_MOESM15_ESM.xlsx

Supplementary file15 Table S9. Functional prediction of ascrotal laurasiatherian specific substitutions in DHH and MEGF8.xlsx (XLSX 49 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chai, S., Tian, R., Yang, Y. et al. Enhanced Negative Regulation of the DHH Signaling Pathway as a Potential Mechanism of Ascrotal Testes in Laurasiatherians. Evol Biol 48, 335–345 (2021). https://doi.org/10.1007/s11692-021-09542-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-021-09542-0

Keywords

Navigation