Skip to main content
Log in

Role of Gut Microbiome and Microbial Metabolites in Alleviating Insulin Resistance After Bariatric Surgery

  • Review
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Insulin resistance (IR) is the most common pathophysiological change in patients with type 2 diabetes mellitus (T2DM). Several recent studies have suggested that the gut microbiome and microbial metabolites are involved in the pathogenesis of IR. Bariatric surgery, as an effective treatment for T2DM, can markedly alleviate IR through mechanisms that have not been elucidated. In this review, we summarize the current evidence on the changes in the gut microbiome and microbial metabolites (including lipopolysaccharide, short-chain fatty acids, branched-chain amino acids, aromatic amino acids, bile acids, methylamines, and indole derivatives) after bariatric surgery. Additionally, we discuss the mechanisms that correlate the changes in microbial metabolites with the postoperative alleviation of IR. Furthermore, we discuss the prospect of bariatric surgery as a treatment for T2DM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

IR:

Insulin resistance

T2DM:

Type 2 diabetes mellitus

GB:

Gastric banding

RYGB:

Roux-en-Y gastric bypass

SG:

Sleeve gastrectomy

LPS:

Lipopolysaccharide

SCFAs:

Short-chain fatty acids

BCAAs:

Branched-chain amino acids

AAAs:

Aromatic amino acids

TMAO:

Trimethylamine N-oxide

IPA:

Indole propionic acid

BAs:

Bile acids

References

  1. Savage DB, Petersen KF, Shulman GI. Disordered lipid metabolism and the pathogenesis of insulin resistance. Physiol Rev. 2007;87(2):507–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Saad MJ, Santos A, Prada PO. Linking gut microbiota and inflammation to obesity and insulin resistance. Physiology (Bethesda). 2016;31(4):283–93.

    CAS  Google Scholar 

  3. Buchwald H, Estok R, Fahrbach K, et al. Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis. Am J Med. 2009;122(3):248–56. e5

    PubMed  Google Scholar 

  4. Buchwald H, Avidor Y, Braunwald E, et al. Bariatric surgery: a systematic review and meta-analysis. JAMA. 2004;292(14):1724–37.

    CAS  PubMed  Google Scholar 

  5. Brial F, Le Lay A, Dumas ME, et al. Implication of gut microbiota metabolites in cardiovascular and metabolic diseases. Cell Mol Life Sci. 2018;75(21):3977–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Vallianou N, Stratigou T, Christodoulatos GS, et al. Understanding the role of the gut microbiome and microbial metabolites in obesity and obesity-associated metabolic disorders: current evidence and perspectives. Curr Obes Rep. 2019;8(3):317–32.

    PubMed  Google Scholar 

  7. Gnauck A, Lentle RG, Kruger MC. The characteristics and function of bacterial lipopolysaccharides and their endotoxic potential in humans. Int Rev Immunol. 2016;35(3):189–218.

    CAS  PubMed  Google Scholar 

  8. Eckburg PB, Bik EM, Bernstein CN, et al. Diversity of the human intestinal microbial flora. Science. 2005;308(5728):1635–8.

    PubMed  PubMed Central  Google Scholar 

  9. Pedersen HK, Gudmundsdottir V, Nielsen HB, et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature. 2016;535(7612):376–81.

    CAS  PubMed  Google Scholar 

  10. Gomes JMG, Costa JA, Alfenas RCG. Metabolic endotoxemia and diabetes mellitus: a systematic review. Metabolism. 2017;68:133–44.

    CAS  PubMed  Google Scholar 

  11. Wurtz P, Soininen P, Kangas AJ, et al. Branched-chain and aromatic amino acids are predictors of insulin resistance in young adults. Diabetes Care. 2013;36(3):648–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Joyce SA, Gahan CG. Disease-associated changes in bile acid profiles and links to altered gut microbiota. Dig Dis. 2017;35(3):169–77.

    PubMed  Google Scholar 

  13. Kasubuchi M, Hasegawa S, Hiramatsu T, et al. Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation. Nutrients. 2015;7(4):2839–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Monte SV, Caruana JA, Ghanim H, et al. Reduction in endotoxemia, oxidative and inflammatory stress, and insulin resistance after Roux-en-Y gastric bypass surgery in patients with morbid obesity and type 2 diabetes mellitus. Surgery. 2012;151(4):587–93.

    PubMed  Google Scholar 

  15. Sowah SA, Riedl L, Damms-Machado A, et al. Effects of weight-loss interventions on short-chain fatty acid concentrations in blood and feces of adults: a systematic review. Adv Nutr. 2019;10(4):673–84.

    PubMed  PubMed Central  Google Scholar 

  16. Liou AP, Paziuk M, Luevano Jr JM, et al. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci Transl Med. 2013;5(178):178ra41.

    PubMed  PubMed Central  Google Scholar 

  17. Lips MA, Van Klinken JB, van Harmelen V, et al. Roux-en-Y gastric bypass surgery, but not calorie restriction, reduces plasma branched-chain amino acids in obese women independent of weight loss or the presence of type 2 diabetes. Diabetes Care. 2014;37(12):3150–6.

    CAS  PubMed  Google Scholar 

  18. Liu R, Hong J, Xu X, et al. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat Med. 2017;23(7):859–68.

    CAS  PubMed  Google Scholar 

  19. Christensen MHE, Fadnes DJ, Rost TH, et al. Inflammatory markers, the tryptophan-kynurenine pathway, and vitamin B status after bariatric surgery. PLoS One. 2018;13(2):e0192169.

    PubMed  PubMed Central  Google Scholar 

  20. Jennis M, Cavanaugh CR, Leo GC, et al. Microbiota-derived tryptophan indoles increase after gastric bypass surgery and reduce intestinal permeability in vitro and in vivo. Neurogastroenterol Motil. 2018;30(2)

  21. Troseid M, Hov JR, Nestvold TK, et al. Major increase in microbiota-dependent proatherogenic metabolite TMAO one year after bariatric surgery. Metab Syndr Relat Disord. 2016;14(4):197–201.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Tremaroli V, Karlsson F, Werling M, et al. Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation. Cell Metab. 2015;22(2):228–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Andrew CA, Umashanker D, Aronne LJ, et al. Intestinal and gastric origins for diabetes resolution after bariatric surgery. Curr Obes Rep. 2018;7(2):139–46.

    PubMed  Google Scholar 

  24. Belgaumkar AP, Vincent RP, Carswell KA, et al. Changes in bile acid profile after laparoscopic sleeve gastrectomy are associated with improvements in metabolic profile and fatty liver disease. Obes Surg. 2016;26(6):1195–202.

    PubMed  Google Scholar 

  25. Mingrone G, Panunzi S, De Gaetano A, et al. Bariatric surgery versus conventional medical therapy for type 2 diabetes. N Engl J Med. 2012;366(17):1577–85.

    CAS  PubMed  Google Scholar 

  26. McTigue KM, Wellman R, Nauman E, et al. Comparing the 5-year diabetes outcomes of sleeve gastrectomy and gastric bypass: the National Patient-Centered Clinical Research Network (PCORNet) Bariatric Study. JAMA Surg. 2020;155(5):e200087.

  27. Aron-Wisnewsky J, Clement K. The effects of gastrointestinal surgery on gut microbiota: potential contribution to improved insulin sensitivity. Curr Atheroscler Rep. 2014;16(11):454.

    PubMed  Google Scholar 

  28. Nannipieri M, Baldi S, Mari A, et al. Roux-en-Y gastric bypass and sleeve gastrectomy: mechanisms of diabetes remission and role of gut hormones. J Clin Endocrinol Metab. 2013;98(11):4391–9.

    CAS  PubMed  Google Scholar 

  29. Shah M, Laurenti MC, Dalla Man C, et al. Contribution of endogenous glucagon-like peptide-1 to changes in glucose metabolism and islet function in people with type 2 diabetes four weeks after Roux-en-Y gastric bypass (RYGB). Metabolism. 2019;93:10–7.

    CAS  PubMed  Google Scholar 

  30. Guyton K, Alverdy JC. The gut microbiota and gastrointestinal surgery. Nat Rev Gastroenterol Hepatol. 2017;14(1):43–54.

    CAS  PubMed  Google Scholar 

  31. Palmisano S, Campisciano G, Silvestri M, et al. Changes in gut microbiota composition after bariatric surgery: a new balance to decode. J Gastrointest Surg. 2020;24(8):1736–1746

  32. Derrien M, Belzer C, de Vos WM. Akkermansia muciniphila and its role in regulating host functions. Microb Pathog. 2017;106:171–81.

    PubMed  Google Scholar 

  33. Ferreira-Halder CV, Faria AVS, Andrade SS. Action and function of Faecalibacterium prausnitzii in health and disease. Best Pract Res Clin Gastroenterol. 2017;31(6):643–8.

    CAS  PubMed  Google Scholar 

  34. Tilg H, Moschen AR. Microbiota and diabetes: an evolving relationship. Gut. 2014;63(9):1513–21.

    CAS  PubMed  Google Scholar 

  35. Debedat J, Amouyal C, Aron-Wisnewsky J, et al. Impact of bariatric surgery on type 2 diabetes: contribution of inflammation and gut microbiome? Semin Immunopathol. 2019;41(4):461–75.

    PubMed  Google Scholar 

  36. Murphy R, Tsai P, Jullig M, et al. Differential changes in gut microbiota after gastric bypass and sleeve gastrectomy bariatric surgery vary according to diabetes remission. Obes Surg. 2017;27(4):917–25.

    PubMed  Google Scholar 

  37. Zhong MW, Liu SZ, Zhang GY, et al. Alterations in gut microbiota during remission and recurrence of diabetes after duodenal-jejunal bypass in rats. World J Gastroenterol. 2016;22(29):6706–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Shao Y, Shen Q, Hua R, et al. Effects of sleeve gastrectomy on the composition and diurnal oscillation of gut microbiota related to the metabolic improvements. Surg Obes Relat Dis. 2018;14(6):731–9.

    PubMed  Google Scholar 

  39. Cani PD, Amar J, Iglesias MA, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56(7):1761–72.

    CAS  PubMed  Google Scholar 

  40. Delzenne NM, Cani PD. Gut microbiota and the pathogenesis of insulin resistance. Curr Diab Rep. 2011;11(3):154–9.

    CAS  PubMed  Google Scholar 

  41. Brun P, Castagliuolo I, Di Leo V, et al. Increased intestinal permeability in obese mice: new evidence in the pathogenesis of nonalcoholic steatohepatitis. Am J Physiol Gastrointest Liver Physiol. 2007;292(2):G518–25.

    CAS  PubMed  Google Scholar 

  42. Draznin B. Molecular mechanisms of insulin resistance: serine phosphorylation of insulin receptor substrate-1 and increased expression of p85α. The Two Sides of a Coin. Diabetes. 2006;55(8):2392–7.

    CAS  PubMed  Google Scholar 

  43. Carvalho-Filho MA, Ueno M, Hirabara SM, et al. S-nitrosation of the insulin receptor, insulin receptor substrate 1, and protein kinase B/Akt: a novel mechanism of insulin resistance. Diabetes. 2005;54(4):959–67.

    CAS  PubMed  Google Scholar 

  44. Sugita H, Kaneki M, Tokunaga E, et al. Inducible nitric oxide synthase plays a role in LPS-induced hyperglycemia and insulin resistance. Am J Physiol Endocrinol Metab. 2002;282(2):E386–E94.

    CAS  PubMed  Google Scholar 

  45. Ropelle ER, Pauli JR, Cintra DE, et al. Targeted disruption of inducible nitric oxide synthase protects against aging, S-nitrosation, and insulin resistance in muscle of male mice. Diabetes. 2013;62(2):466–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Clemente-Postigo M, Roca-Rodriguez Mdel M, Camargo A, et al. Lipopolysaccharide and lipopolysaccharide-binding protein levels and their relationship to early metabolic improvement after bariatric surgery. Surg Obes Relat Dis. 2015;11(4):933–9.

    PubMed  Google Scholar 

  47. Cummings JH, Pomare EW, Branch WJ, et al. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut. 1987;28(10):1221–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Miller TL, Wolin MJ. Pathways of acetate, propionate, and butyrate formation by the human fecal microbial flora. Appl Environ Microbiol. 1996;62(5):1589–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Flint HJ, Bayer EA, Rincon MT, et al. Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat Rev Microbiol. 2008;6(2):121–31.

    CAS  PubMed  Google Scholar 

  50. Bose S, Ramesh V, Locasale JW. Acetate metabolism in physiology, cancer, and beyond. Trends Cell Biol. 2019;29(9):695–703.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Al-Lahham SH, Peppelenbosch MP, Roelofsen H, et al. Biological effects of propionic acid in humans; metabolism, potential applications and underlying mechanisms. Biochim Biophys Acta. 2010;1801(11):1175–83.

    CAS  PubMed  Google Scholar 

  52. Velazquez OC, Lederer HM, Rombeau JL. Butyrate and the colonocyte. Production, absorption, metabolism, and therapeutic implications. Adv Exp Med Biol. 1997;427:123–34.

    CAS  PubMed  Google Scholar 

  53. Yan H, Ajuwon KM. Butyrate modifies intestinal barrier function in IPEC-J2 cells through a selective upregulation of tight junction proteins and activation of the Akt signaling pathway. PLoS One. 2017;12(6):e0179586.

    PubMed  PubMed Central  Google Scholar 

  54. Schwiertz A, Taras D, Schafer K, et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring). 2010;18(1):190–5.

    Google Scholar 

  55. Tedelind S, Westberg F, Kjerrulf M, et al. Anti-inflammatory properties of the short-chain fatty acids acetate and propionate: a study with relevance to inflammatory bowel disease. World J Gastroenterol. 2007;13(20):2826–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Yamashita H, Fujisawa K, Ito E, et al. Improvement of obesity and glucose tolerance by acetate in type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Biosci Biotechnol Biochem. 2007;71(5):1236–43.

    CAS  PubMed  Google Scholar 

  57. Yamashita H. Biological function of acetic acid-improvement in obesity and glucose tolerance by acetic acid in type 2 diabetic rats. Crit Rev Food Sci Nutr. 2016;56(Suppl 1):S171–5.

    CAS  PubMed  Google Scholar 

  58. Chambers ES, Viardot A, Psichas A, et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut. 2015;64(11):1744–54.

    CAS  PubMed  Google Scholar 

  59. Gao F, Lv YW, Long J, et al. Butyrate improves the metabolic disorder and gut microbiome dysbiosis in mice induced by a high-fat diet. Front Pharmacol. 2019;10:1040.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504(7480):446–50.

    CAS  PubMed  Google Scholar 

  61. Perry RJ, Peng L, Barry NA, et al. Acetate mediates a microbiome-brain-beta-cell axis to promote metabolic syndrome. Nature. 2016;534(7606):213–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Si X, Shang W, Zhou Z, et al. Gut microbiome-induced shift of acetate to butyrate positively manages dysbiosis in high fat diet. Mol Nutr Food Res. 2018;62(3)

  63. Tirosh A, Calay ES, Tuncman G, et al. The short-chain fatty acid propionate increases glucagon and FABP4 production, impairing insulin action in mice and humans. Sci Transl Med. 2019;11(489)

  64. Yoon MS. The emerging role of branched-chain amino acids in insulin resistance and metabolism. Nutrients. 2016;8(7)

  65. Leite AZ, Rodrigues NC, Gonzaga MI, et al. Detection of increased plasma interleukin-6 levels and prevalence of and in the feces of type 2 diabetes patients. Front Immunol. 2017;8:1107.

    PubMed  PubMed Central  Google Scholar 

  66. Yu Y, Yoon SO, Poulogiannis G, et al. Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science. 2011;332(6035):1322–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Gaggini M, Carli F, Rosso C, et al. Altered amino acid concentrations in NAFLD: impact of obesity and insulin resistance. Hepatology. 2018;67(1):145–58.

    CAS  PubMed  Google Scholar 

  68. Laferrere B, Reilly D, Arias S, et al. Differential metabolic impact of gastric bypass surgery versus dietary intervention in obese diabetic subjects despite identical weight loss. Sci Transl Med. 2011;3(80):80re2.

    PubMed  PubMed Central  Google Scholar 

  69. Guo Y, Huang ZP, Liu CQ, et al. Modulation of the gut microbiome: a systematic review of the effect of bariatric surgery. Eur J Endocrinol. 2018;178(1):43–56.

    CAS  PubMed  Google Scholar 

  70. Zhang LS, Davies SS. Microbial metabolism of dietary components to bioactive metabolites: opportunities for new therapeutic interventions. Genome Med. 2016;8(1):46.

    PubMed  PubMed Central  Google Scholar 

  71. Nicoletti CF, Morandi Junqueira-Franco MV, dos Santos JE, et al. Protein and amino acid status before and after bariatric surgery: a 12-month follow-up study. Surg Obes Relat Dis. 2013;9(6):1008–12.

    PubMed  Google Scholar 

  72. Swierczynski J, Sledzinski T, Slominska E, et al. Serum phenylalanine concentration as a marker of liver function in obese patients before and after bariatric surgery. Obes Surg. 2009;19(7):883–9.

    PubMed  Google Scholar 

  73. Cervenka I, Agudelo LZ, Ruas JL. Kynurenines: tryptophan’s metabolites in exercise, inflammation, and mental health. Science. 2017;357(6349)

  74. Favennec M, Hennart B, Caiazzo R, et al. The kynurenine pathway is activated in human obesity and shifted toward kynurenine monooxygenase activation. Obesity (Silver Spring). 2015;23(10):2066–74.

    CAS  Google Scholar 

  75. Yu E, Papandreou C, Ruiz-Canela M, et al. Association of tryptophan metabolites with incident type 2 diabetes in the PREDIMED trial: a case-cohort study. Clin Chem. 2018;64(8):1211–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Lee JH, Wood TK, Lee J. Roles of indole as an interspecies and interkingdom signaling molecule. Trends Microbiol. 2015;23(11):707–18.

    CAS  PubMed  Google Scholar 

  77. de Mello VD, Paananen J, Lindstrom J, et al. Indolepropionic acid and novel lipid metabolites are associated with a lower risk of type 2 diabetes in the Finnish Diabetes Prevention Study. Sci Rep. 2017;7:46337.

    PubMed  PubMed Central  Google Scholar 

  78. Menni C, Hernandez MM, Vital M, et al. Circulating levels of the anti-oxidant indoleproprionic acid are associated with higher gut microbiome diversity. Gut Microbes. 2019;10(6):688–95.

    PubMed  PubMed Central  Google Scholar 

  79. Bansal T, Alaniz RC, Wood TK, et al. The bacterial signal indole increases epithelial-cell tight-junction resistance and attenuates indicators of inflammation. Proc Natl Acad Sci U S A. 2010;107(1):228–33.

    CAS  PubMed  Google Scholar 

  80. Chimerel C, Emery E, Summers DK, et al. Bacterial metabolite indole modulates incretin secretion from intestinal enteroendocrine L cells. Cell Rep. 2014;9(4):1202–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Botsford JL, DeMoss RD. Catabolite repression of tryptophanase in Escherichia coli. J Bacteriol. 1971;105(1):303–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Bennett BJ, de Aguiar Vallim TQ, Wang Z, et al. Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell Metab. 2013;17(1):49–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Wang Z, Klipfell E, Bennett BJ, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472(7341):57–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Heianza Y, Sun D, Li X, et al. Gut microbiota metabolites, amino acid metabolites and improvements in insulin sensitivity and glucose metabolism: the POUNDS Lost trial. Gut. 2019;68(2):263–70.

    CAS  PubMed  Google Scholar 

  85. Miao J, Ling AV, Manthena PV, et al. Flavin-containing monooxygenase 3 as a potential player in diabetes-associated atherosclerosis. Nat Commun. 2015;6:6498.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Hoyles L, Jimenez-Pranteda ML, Chilloux J, et al. Metabolic retroconversion of trimethylamine N-oxide and the gut microbiota. Microbiome. 2018;6(1):73.

    PubMed  PubMed Central  Google Scholar 

  87. Barrett EL, Kwan HS. Bacterial reduction of trimethylamine oxide. Annu Rev Microbiol. 1985;39:131–49.

    CAS  PubMed  Google Scholar 

  88. Gonzalez FJ, Jiang C, Patterson AD. An intestinal microbiota-Farnesoid X receptor axis modulates metabolic disease. Gastroenterology. 2016;151(5):845–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Wahlstrom A, Sayin SI, Marschall HU, et al. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 2016;24(1):41–50.

    PubMed  Google Scholar 

  90. Wang H, Chen J, Hollister K, et al. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol Cell. 1999;3(5):543–53.

    CAS  PubMed  Google Scholar 

  91. Fiorucci S, Distrutti E. Bile acid-activated receptors, intestinal microbiota, and the treatment of metabolic disorders. Trends Mol Med. 2015;21(11):702–14.

    CAS  PubMed  Google Scholar 

  92. Trabelsi MS, Daoudi M, Prawitt J, et al. Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells. Nat Commun. 2015;6:7629.

    PubMed  PubMed Central  Google Scholar 

  93. Shihabudeen MS, Roy D, James J, et al. Chenodeoxycholic acid, an endogenous FXR ligand alters adipokines and reverses insulin resistance. Mol Cell Endocrinol. 2015;414:19–28.

    CAS  PubMed  Google Scholar 

  94. Katsuma S, Hirasawa A, Tsujimoto G. Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1. Biochem Biophys Res Commun. 2005;329(1):386–90.

    CAS  PubMed  Google Scholar 

  95. Zhai H, Li Z, Peng M, et al. Takeda G protein-coupled receptor 5-mechanistic target of Rapamycin complex 1 signaling contributes to the increment of glucagon-like peptide-1 production after roux-en-Y gastric bypass. EBioMedicine. 2018;32:201–14.

    PubMed  PubMed Central  Google Scholar 

  96. Ahlin S, Cefalù C, Bondia-Pons I, et al. Bile acid changes after metabolic surgery are linked to improvement in insulin sensitivity. Br J Surg. 2019;106(9):1178–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Tulipani S, Griffin J, Palau-Rodriguez M, et al. Metabolomics-guided insights on bariatric surgery versus behavioral interventions for weight loss. Obesity (Silver Spring). 2016;24(12):2451–66.

    CAS  Google Scholar 

  98. Albaugh VL, Banan B, Antoun J, et al. Role of bile acids and GLP-1 in mediating the metabolic improvements of bariatric surgery. Gastroenterology. 2019;156(4):1041–51. e4

    CAS  PubMed  Google Scholar 

Download references

Funding

The work was supported by the National Natural Science Foundation of China (grant number 81970524 and 81702363); the Natural Science Foundation of Shandong Province (grant number ZR2019BH010); the Key Research and Development Program of Shandong Province (grant number 2019GSF108243 and 2019GSF108161); the Science and Technology Development Program of Jinan (grant number 201907068); and the China Postdoctoral Science Foundation (grant number 2020M672102).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Tian or Changqing Jing.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval Statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent Statement

Informed consent does not apply.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Li, L., Chen, Y. et al. Role of Gut Microbiome and Microbial Metabolites in Alleviating Insulin Resistance After Bariatric Surgery. OBES SURG 31, 327–336 (2021). https://doi.org/10.1007/s11695-020-04974-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-020-04974-7

Keywords

Navigation