Skip to main content
Log in

State filling effects on photoluminescence and photovoltaic characteristic of aluminium-doped CdTe colloidal quantum dots stabilized in aqueous medium

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

CdTe and aluminium (Al)-doped CdTe (Al:CdTe QDs) colloidal quantum dots (QDs) were synthesized through an aqueous route. CdTe and Al:CdTe QDs colloidal quantum dots of different size were obtained by collecting the samples at different refluxing time. The size of the synthesized QDs collected after 6 h of refluxing time was measured to 3.3 and 4.8 nm for Al:CdTe QDs and CdTe QDs, respectively. The size shrinkages of Al:CdTe QDs were due to chlorine ions from AlCl3 precursor, which controls the growth kinetics of QDs and stabilizes the QDs in the aqueous phase. The size shrinkages of Al:CdTe QDs result in an increase of bandgap from 2.13 to 2.3 eV and congruently blue-shifted absorbance and emission spectra were discerned. The state filling effect, gradual filling of energy state, observed clearly in photoluminescence spectra of Al:CdTe QDs for samples collected after 30 min of refluxing time. We also fabricated Gratzel-type QDs-sensitized solar cells by loading CdTe and Al:CdTe QDs on mesoporous TiO2 photoanode. Photovoltaic efficiency is marginally increased (13%) from 0.45 to 0.51% for Al-doped CdTe QDs as compared to CdTe QDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Esch V, Fluegel B, Khitrova G, Gibbs HM, Jiajin X, Kang K, Peyghambarian N (1990) State filling, Coulomb, and trapping effects in the optical nonlinearity of CdTe quantum dots in glass. Phys Rev B 42(12):7450

    CAS  Google Scholar 

  • Arivarasan A, Sasikala G, Jayavel R (2014) In situ synthesis of CdTe:CdS quantum dot nanocomposites for photovoltaic applications. Mater Sci Semicond Process 25:238–243

    CAS  Google Scholar 

  • Arivarasan A, Bharathi S, Vijayaraj V, Sasikala G, Jayavel R (2018) Evaluation of reaction parameters dependent optical properties and its photovoltaics performances of CdTe QDs. J Inorg Organomet Polym Mater 28:1263–1275

    CAS  Google Scholar 

  • Arivarasan A, Bharathi S, Ezhilarasi S, Arunpandiyan S, Jayavel R (2019) Photovoltaic performances of Yb doped CdTe QDs sensitized TiO2 photoanodes for solar cell applications. J Inorg Organomet Polym Mater 29:859–868

    Google Scholar 

  • Ayyaswamy A, Ganapathy S, Alsalme A, Alghamdi A, Ramasamy J (2015) Structural, optical and photovoltaic properties of co-doped CdTe QDs for quantum dots sensitized solar cells. Superlattices Microstruct 88:634–644

    CAS  Google Scholar 

  • Beaulac R, Archer PI, Gamelin DR (2008) Luminescence in colloidal Mn2+-doped semiconductor nanocrystals. J Solid State Chem 181:1582–1589

    CAS  Google Scholar 

  • Bera D, Qian L, Tseng TK, Holloway PH (2010) Quantum dots and their multimodal applications: a review. Materials (Basel) 3:2260–2345

    CAS  Google Scholar 

  • González-Pedro V, Xu X, Mora-Sero I, Bisquert J (2010) Modeling high-efficiency quantum dot sensitized solar cells. ACS Nano 4(10):5783–5790

    PubMed  Google Scholar 

  • Bryan JD, Gamelin DR (2005) Doped semiconductor nanocrystals: synthesis, characterization, physical properties, and applications. Prog Inorg Chem 54(47):47–126

    CAS  Google Scholar 

  • Das TK, Ilaiyaraja P, Sudakar C (2017) Coexistence of strongly and weakly confined energy levels in (Cd, Zn)Se quantum dots: tailoring the near-band-edge and defect-levels for white light emission. J Appl Phys 121:183102

    Google Scholar 

  • Jenkins R, Snyder RL (1996) Introduction to X-ray powder diffractometry (No. 543.427 JEN)

  • De Moure-Flores F, Quiñones-Galván JG, Guillén-Cervantes A, Arias-Cerón JS, Hernández-Hernández A, Santoyo-Salazar J, Santos-Cruz J, Mayén-Hernández SA, De La M, Mendoza-Álvarez JG, Meléndez-Lira M, Contreras-Puente G (2014) CdTe thin films grown by pulsed laser deposition using powder as target: effect of substrate temperature. J Cryst Growth 386:27–31

    Google Scholar 

  • Debnath R, Bakr O, Sargent EH (2011) Solution-processed colloidal quantum dot photovoltaics: a perspective. Energy Environ Sci 4:4870–4881

    CAS  Google Scholar 

  • Dharmadasa IM, Echendu OK, Fauzi F, Abdul-Manaf NA, Olusola OI, Salim HI, Madugu ML, Ojo AA (2017) Improvement of composition of CdTe thin films during heat treatment in the presence of CdCl2. J Mater Sci Mater Electron 28:2343–2352

    CAS  Google Scholar 

  • Divsar F (ed) (2020) Quantum dots: fundamental and applications. BoD–Books on Demand

  • do Santos CIL, Carvalho MS, Raphael E, Dantas C, Ferrari JL, Schiavon MA (2016) Synthesis, optical characterization, and size distribution determination by curve resolution methods of water-soluble CdSe quantum dots. Mater Res 19:1407–1416

    Google Scholar 

  • Donegan J, Rakovich Y (eds) (2013) Cadmium telluride quantum dots: advances and applications. CRC Press

  • Drummen GPC (2010) Quantum dots—from synthesis to applications in biomedicine and life sciences. Int J Mol Sci 11:154–163

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fazaeli Y, Zare H, Karimi S, Rahighi R, Feizi S (2017) Novel aspects of application of cadmium telluride quantum dots nanostructures in radiation oncology. Appl Phys A Mater Sci Process 123:1–9

    CAS  Google Scholar 

  • Ilaiyaraja P, Mocherla PSV, Srinivasan TK, Sudakar C (2016) Synthesis of Cu-deficient and Zn-graded Cu–In–Zn-S quantum dots and hybrid inorganic-organic nanophosphor composite for white light emission. ACS Appl Mater Interfaces 8:12456–12465

    CAS  PubMed  Google Scholar 

  • Ilaiyaraja P, Rakesh B, Das TK, Mocherla PSV, Sudakar C (2018) CuInS2 quantum dot sensitized solar cells with high VOC ≈ 0.9 V achieved using microsphere-nanoparticulate TiO2 composite photoanode. Sol Energy Mater Sol Cells 178:208–222

    CAS  Google Scholar 

  • Jun HK, Careem MA, Arof AK (2013) Quantum dot-sensitized solar cells-perspective and recent developments: a review of Cd chalcogenide quantum dots as sensitizers. Renew Sustain Energy Rev 22:148–167

    CAS  Google Scholar 

  • Kitasako T, Saitow KI (2013) Si quantum dots with a high absorption coefficient: analysis based on both intensive and extensive variables. Appl Phys Lett 103:151912

    Google Scholar 

  • Li L, Zou X, Zhou H, Teng G (2014) Cu-doped-CdS/In-doped-CdS cosensitized quantum dot solar cells. J Nanomater 2014:1–8

    Google Scholar 

  • Li H, Lesnyak V, Manna L (2015) Solution-processable quantum dots. Large Area and Flexible Electronics

  • Liu Y, Kim D, Morris OP, Zhitomirsky D, Grossman JC (2018) Origins of the stokes shift in PbS quantum dots: impact of polydispersity, ligands, and defects. ACS Nano 12:2838–2845

    CAS  PubMed  Google Scholar 

  • Makkar M, Viswanatha R (2018) Frontier challenges in doping quantum dots: synthesis and characterization. RSC Adv 8:22103–22112

    CAS  Google Scholar 

  • Nozik AJ (2008) Multiple exciton generation in semiconductor quantum dots. Chem Phys Lett 457:3–11

    CAS  Google Scholar 

  • Ostapenko IA, Hönig G, Kindel C, Rodt S, Strittmatter A, Hoffmann A, Bimberg D (2010) Large internal dipole moment in InGaN/GaN quantum dots. Appl Phys Lett 97:2–5

    Google Scholar 

  • Pu C, Ma J, Qin H, Yan M, Fu T, Niu Y, Yang X, Huang Y, Zhao F, Peng X (2016) Doped semiconductor-nanocrystal emitters with optimal photoluminescence decay dynamics in microsecond to millisecond range: synthesis and applications. ACS Cent Sci 2:32–39

    CAS  PubMed  Google Scholar 

  • Rosenthal SJ, Chang JC, Kovtun O, McBride JR, Tomlinson ID (2011) Biocompatible quantum dots for biological applications. Chem Biol 18(1):10–24

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saeedzadeh Amiri N, Milani Hosseini MR (2019) Application of ratiometric fluorescence sensor-based microwave-assisted synthesized CdTe quantum dots and mesoporous structured epitope-imprinted polymers for highly efficient determination of tyrosine phosphopeptide. Anal Methods 12:63–72

    Google Scholar 

  • Schulze AS, Tavernaro I, Machka F, Dakischew O, Lips KS, Wickleder MS (2017) Tuning optical properties of water-soluble CdTe quantum dots for biological applications. J Nanopart Res. https://doi.org/10.1007/s11051-017-3757-2

    Article  Google Scholar 

  • Shen M, Jia W, You Y, Hu Y, Li F, Tian S, Li J, Jin Y, Han D (2013) Luminescent properties of CdTe quantum dots synthesized using 3-mercaptopropionic acid reduction of tellurium dioxide directly. Nanoscale Res Lett 8:1–6

    Google Scholar 

  • Shen T, Tian J, Lv L, Fei C, Wang Y, Pullerits T, Cao G (2016) Investigation of the role of Mn dopant in CdS quantum dot sensitized solar cell. Electrochim Acta 191:62–69

    CAS  Google Scholar 

  • Shim M, Guyot-Sionnest P (1999) Permanent dipole moment and charges in colloidal semiconductor quantum dots. J Chem Phys 111:6955–6964

    CAS  Google Scholar 

  • Subramanian S, Ganapathy S, Rajaram M, Ayyaswamy A (2020) Tuning the optical properties of colloidal quantum dots using thiol group capping agents and its comparison. Mater Chem Phys 249:123127

    CAS  Google Scholar 

  • Thuy UTD, Toan PS, Chi TTK, Khang DD, Liem NQ (2010) CdTe quantum dots for an application in the life sciences. Adv Nat Sci Nanosci Nanotechnol 1:045009

    Google Scholar 

  • Tisdale WA, Williams KJ, Timp BA, Norris DJ, Aydil ES, Zhu XY (2010) Hot-electron transfer from semiconductor nanocrystals. Science 328(5985):1543–1547

    CAS  PubMed  Google Scholar 

  • Tuinenga C, Jasinski J, Iwamoto T, Chikan V (2008) situ observation of heterogeneous growth of CdSe quantum dots: effect of indium doping on the growth kinetics. ACS Nano 2:1411–1421

    CAS  PubMed  Google Scholar 

  • Tynkevych O, Karavan V, Vorona I, Filonenko S, Khalavka Y (2018) Synthesis and properties of water-soluble blue-emitting mn-alloyed CdTe quantum dots. Nanoscale Res Lett 13:1–6

    CAS  Google Scholar 

  • Van DL, Wen X, Tra M, Do T, Hannaford P (2005) Time-resolved and time-integrated photoluminescence analysis of state filling and quantum confinement of silicon quantum dots. J Appl Phys 013501:1–5

    Google Scholar 

  • Wen XM, Dao LV, Hannaford P, Mokkapati S, Tan HH (2007) The state filling effect in p-doped InGaAs/GaAs quantum dots. J Phys Condens Matter 19:1–10

    Google Scholar 

  • Yu WW, Qu L, Guo W, Peng X (2003) Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater 15:2854–2860

    CAS  Google Scholar 

  • Zhang XQ, Ganapathy S, Kumano H, Uesugi K, Suemune I (2002) Photoluminescence study of InAs quantum dots embedded in GaNAs strain compensating layer grown by metalorganic-molecular-beam epitaxy. J Appl Phys 92:6813–6818

    CAS  Google Scholar 

  • Zhang WJ, Pan CY, Cao F, Yang X (2017) White-light-emitting Cu, Mn co-doped Zn–In-S/ZnS quantum dots with high stability and their electroluminescence. J Mater Chem C 5:10533–10542

    CAS  Google Scholar 

Download references

Acknowledgements

The author VV, acknowledge to Government of India for the financial support through UGC-Rajiv Gandhi National Fellowship (F1­17.1/2015­16/RGNF­2015­17­SC­TAM­18304).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sasikala Ganapathy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4180 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkatachalam, V., Ganapathy, S., Perumal, I. et al. State filling effects on photoluminescence and photovoltaic characteristic of aluminium-doped CdTe colloidal quantum dots stabilized in aqueous medium. Chem. Pap. 75, 1883–1892 (2021). https://doi.org/10.1007/s11696-020-01406-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-020-01406-9

Keywords

Navigation