Skip to main content
Log in

Dehydration of natural gas and biogas streams using solid desiccants: a review

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Natural gas and biogas are two mixtures that consist of methane as their main component. These two gas mixtures are usually saturated with water vapor, which cause many problems, such as damaging the gas processing equipment by increasing the gas’s corrosion potential or clogging the pipelines due to gas hydrate formation. Thus, removing water vapor from these gas streams is mandatory. In this review paper, the main dehydration methods have been overviewed, and scrutiny of the adsorption dehydration has been carried out. Furthermore, the most important solid desiccants and their improvements have been reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rahimpour M R, Jokar S M, Feyzi P, Asghari R. Investigating the performance of dehydration unit with Coldfinger technology in gas processing plant. Journal of Natural Gas Science and Engineering, 2013, 12: 1–12

    Article  Google Scholar 

  2. Faramawy S, Zaki T, Sakr A E. Natural gas origin, composition, and processing: a review. Journal of Natural Gas Science and Engineering, 2016, 34: 34–54

    Article  CAS  Google Scholar 

  3. Kong Z Y, Mahmoud A, Liu S, Sunarso J. Revamping existing glycol technologies in natural gas dehydration to improve the purity and absorption efficiency: available methods and recent developments. Journal of Natural Gas Science and Engineering, 2018, 56: 486–503

    Article  CAS  Google Scholar 

  4. Alcheikhhamdon Y, Hoorfar M. Natural gas quality enhancement: a review of the conventional treatment processes, and the industrial challenges facing emerging technologies. Journal of Natural Gas Science and Engineering, 2016, 34: 689–701

    Article  CAS  Google Scholar 

  5. Abbasi T, Tauseef S, Abbasi S. Biogas and Biogas Energy: An Introduction. Vol. 2. New York: Springer, 2012, 1–10.

    Google Scholar 

  6. Appels L, Baeyens J, Degrève J, Dewil R. Principles and potential of the anaerobic digestion of waste-activated sludge. Progress in Energy and Combustion Science, 2008, 34(6): 755–781

    Article  CAS  Google Scholar 

  7. Bahraminia S, Anbia M, Koohsaryan E. Hydrogen sulfide removal from biogas using ion-exchanged nanostructured NaA zeolite for fueling solid oxide fuel cells. International Journal of Hydrogen Energy, 2020, 45(55): 31027–31040

    Article  CAS  Google Scholar 

  8. Deublein D, Steinhauser A. Biogas from Waste and Renewable Resources: An Introduction. 1st ed. New Jersey: John Wiley & Sons, 2008, 49–56

    Google Scholar 

  9. Zhu X, Xu D, Wang J K. Contributions in renewable energy systems: a perspective from the latest publications of FCSE. Frontiers of Chemical Science and Engineering, 2019, 13(4): 632–635

    Article  Google Scholar 

  10. Spitoni M, Pierantozzi M, Comodi G, Polonara F, Arteconi A. Theoretical evaluation and optimization of a cryogenic technology for carbon dioxide separation and methane liquefaction from biogas. Journal of Natural Gas Science and Engineering, 2019, 62: 132–143

    Article  CAS  Google Scholar 

  11. Scholz M, Melin T, Wessling M. Transforming biogas into biomethane using membrane technology. Renewable & Sustainable Energy Reviews, 2013, 17: 199–212

    Article  CAS  Google Scholar 

  12. Gonfa G, Bustam M A, Sharif A M, Mohamad N, Ullah S. Tuning ionic liquids for natural gas dehydration using COSMO-RS methodology. Journal of Natural Gas Science and Engineering, 2015, 27: 1141–1148

    Article  CAS  Google Scholar 

  13. Rahimpour M, Saidi M, Seifi M. Improvement of natural gas dehydration performance by optimization of operating conditions: a case study in Sarkhun gas processing plant. Journal of Natural Gas Science and Engineering, 2013, 15: 118–126

    Article  CAS  Google Scholar 

  14. Rouzbahani A N, Bahmani M, Shariati J, Tohidian T, Rahimpour M. Simulation, optimization, and sensitivity analysis of a natural gas dehydration unit. Journal of Natural Gas Science and Engineering, 2014, 21: 159–169

    Article  CAS  Google Scholar 

  15. Caputo F, Cascetta F, Lamanna G, Rotondo G, Soprano A. Estimation of the damage in a natural gas flow line caused by the motion of methane hydrates. Journal of Natural Gas Science and Engineering, 2015, 26: 1222–1231

    Article  CAS  Google Scholar 

  16. Løkken T V. Comparison of hygrometers for monitoring of water vapour in natural gas. Journal of Natural Gas Science and Engineering, 2012, 6: 24–36

    Article  CAS  Google Scholar 

  17. Løkken T. Water vapour monitoring in natural gas in the presence of methanol. Journal of Natural Gas Science and Engineering, 2012, 7: 7–15

    Article  CAS  Google Scholar 

  18. Løkken T. Water vapour measurements in natural gas in the presence of ethylene glycol. Journal of Natural Gas Science and Engineering, 2013, 12: 13–21

    Article  CAS  Google Scholar 

  19. Medeiros F A, Shiguematsu F M, Campos F B, Segtovich I S V, Ourique J E S, Barreto A G Jr, Tavares F W. Alternative EoS-based model for predicting water content, metastable phases and hydrate formation in natural gas systems. Journal of Natural Gas Science and Engineering, 2016, 36: 550–562

    Article  CAS  Google Scholar 

  20. Aromada S A, Kvamme B. New approach for evaluating the risk of hydrate formation during transport of hydrocarbon hydrate formers of sI and sII. AIChE Journal. American Institute of Chemical Engineers, 2019, 65(3): 1097–1110

    Article  CAS  Google Scholar 

  21. Kvamme B, Aromada S A. Risk of hydrate formation during the processing and transport of Troll gas from the North Sea. Journal of Chemical & Engineering Data, 2017, 62(7): 2163–2177

    Article  CAS  Google Scholar 

  22. Kvamme B, Kuznetsova T, Bauman J M, Sjöblom S, Avinash Kulkarni A. Hydrate formation during transport of natural gas containing water and impurities. Journal of Chemical & Engineering Data, 2016, 61(2): 936–949

    Article  CAS  Google Scholar 

  23. Neagu M, Cursaru D L. Technical and economic evaluations of the triethylene glycol regeneration processes in natural gas dehydration plants. Journal of Natural Gas Science and Engineering, 2017, 37: 327–340

    Article  CAS  Google Scholar 

  24. Aromada S A, Kvamme B. Impacts of CO2 and H2S on the risk of hydrate formation during pipeline transport of natural gas. Frontiers of Chemical Science and Engineering, 2019, 13(3): 616–627

    Article  CAS  Google Scholar 

  25. Taheri Z, Shabani M R, Nazari K, Mehdizaheh A. Natural gas transportation and storage by hydrate technology: iran case study. Journal of Natural Gas Science and Engineering, 2014, 21: 846–849

    Article  CAS  Google Scholar 

  26. Long Z, Zhou X, He Y, Li D, Liang D. Performance of mixture of ethylene glycol and glycine in inhibiting methane hydrate formation. Journal of Natural Gas Science and Engineering, 2018, 56: 134–140

    Article  CAS  Google Scholar 

  27. Ke W, Svartaas T M, Chen D. A review of gas hydrate nucleation theories and growth models. Journal of Natural Gas Science and Engineering, 2019, 61: 169–196

    Article  CAS  Google Scholar 

  28. Farag H A, Ezzat M M, Amer H, Nashed A W. Natural gas dehydration by desiccant materials. Alexandria Engineering Journal, 2011, 50(4): 431–439

    Article  CAS  Google Scholar 

  29. Koh C, Westacott R E, Zhang W, Hirachand K, Creek J, Soper A. Mechanisms of gas hydrate formation and inhibition. Fluid Phase Equilibria, 2002, 194: 143–151

    Article  Google Scholar 

  30. Mokhatab S, Poe W A, Mak J. Handbook of Natural Gas Transmission and Processing. 3rd ed. Houston: Gulf Professional Publishing, 2015, 223–263

    Book  Google Scholar 

  31. Netusil M, Ditl P. Natural Gas—Extraction to End Use. London: IntechOpen, 2012, 3–22

    Google Scholar 

  32. Ranjbar H, Ahmadi H, Sheshdeh R K, Ranjbar H. Application of relative sensitivity function in parametric optimization of a tri-ethylene glycol dehydration plant. Journal of Natural Gas Science and Engineering, 2015, 25: 39–45

    Article  CAS  Google Scholar 

  33. Bahadori A, Vuthaluru H B. Rapid estimation of equilibrium water dew point of natural gas in TEG dehydration systems. Journal of Natural Gas Science and Engineering, 2009, 1(3): 68–71

    Article  Google Scholar 

  34. Carroll J. Natural Gas Hydrates: A Guide for Engineers. 2nd ed. Houston: Gulf Professional Publishing, 2009, 151–169

    Book  Google Scholar 

  35. Bahadori A, Vuthaluru H B. Simple methodology for sizing of absorbers for TEG (triethylene glycol) gas dehydration systems. Energy, 2009, 34(11): 1910–1916

    Article  CAS  Google Scholar 

  36. Aissaoui T, Al Nashef I M, Benguerba Y. Dehydration of natural gas using choline chloride based deep eutectic solvents: COSMO-RS prediction. Journal of Natural Gas Science and Engineering, 2016, 30: 571–577

    Article  CAS  Google Scholar 

  37. Petryk M, Khimich A, Petryk M, Fraissard J. Experimental and computer simulation studies of dehydration on microporous adsorbent of natural gas used as motor fuel. Fuel, 2019, 239: 1324–1330

    Article  CAS  Google Scholar 

  38. Rozyyev V, Yavuz C T. An all-purpose porous cleaner for acid gas removal and dehydration of natural gas. Chem, 2017, 3(5): 719–721

    Article  CAS  Google Scholar 

  39. Lavrenko V, Podchernyaeva I, Shchur D, Zolotarenko A D, Zolotarenko A D. Features of physical and chemical adsorption during interaction of polycrystalline and nanocrystalline materials with gases. Powder Metallurgy and Metal Ceramics, 2018, 56(9–10): 504–511

    Article  CAS  Google Scholar 

  40. Ghiasi M M, Bahadori A, Zendehboudi S. Estimation of the water content of natural gas dried by solid calcium chloride dehydrator units. Fuel, 2014, 117: 33–42

    Article  CAS  Google Scholar 

  41. Yang Y, Zhang P, Wang L. Parametric analysis of thermal-pulse regeneration of activated alumina in temperature swing adsorption process used for gas dehydration. Applied Thermal Engineering, 2018, 141: 762–774

    Article  CAS  Google Scholar 

  42. Sreenivasan V, Alladwar S G, Noakes K. Mitigate H2S spike in 4A molecular sieve gas dehydration. In: Abu Dhabi International Petroleum Exhibition & Conference. Richardson Society of Petroleum Engineers, 2019

  43. Shen C, Worek W. Cosorption characteristics of solid adsorbents. International Journal of Heat and Mass Transfer, 1994, 37(14): 2123–2129

    Article  CAS  Google Scholar 

  44. Gorbach A, Stegmaier M, Eigenberger G. Measurement and modeling of water vapor adsorption on zeolite 4A—equilibria and kinetics. Adsorption, 2004, 10(1): 29–46

    Article  CAS  Google Scholar 

  45. Dawoud B, Vedder U, Amer E H, Dunne S. Non-isothermal adsorption kinetics of water vapour into a consolidated zeolite layer. International Journal of Heat and Mass Transfer, 2007, 50(11–12): 2190–2199

    Article  CAS  Google Scholar 

  46. Al-Asheh S, Banat F, Fara A A. Dehydration of ethanol-water azeotropic mixture by adsorption through phillipsite packed-column. Separation Science and Technology, 2009, 44(13): 3170–3188

    Article  CAS  Google Scholar 

  47. Nastaj J, Ambrożek B. Analysis of gas dehydration in TSA system with multi-layered bed of solid adsorbents. Chemical Engineering and Processing: Process Intensification, 2015, 96: 44–53

    Article  CAS  Google Scholar 

  48. Kim K, Lee M, Paek S, Yim S, Ahn D, Chung H. Adsorption tests of water vapor on synthetic zeolites for an atmospheric detritiation dryer. Radiation Physics and Chemistry, 2007, 76(8–9): 1493–1496

    Article  CAS  Google Scholar 

  49. Rezvani H, Fatemi S. Influence of water vapor condensation inside nano-porous 4A adsorbent in adsorption-desorption cyclic process of natural gas dehydration. Separation Science and Technology, 2020, 55(7): 1286–1302

    Article  CAS  Google Scholar 

  50. Li C, Jia W, Wu X. Experimental failure-mechanism analysis of 4A zeolites used for natural-gas drying. Chemistry and Technology of Fuels and Oils, 2015, 51(3): 245–251

    Article  CAS  Google Scholar 

  51. Štěpánek F, Kubíček M, Marek M, Šoóš M, Rajniak P, Yang R T. On the modeling of PSA cycles with hysteresis-dependent isotherms. Chemical Engineering Science, 2000, 55(2): 431–440

    Article  Google Scholar 

  52. Ahn H, Lee C H. Effects of capillary condensation on adsorption and thermal desorption dynamics of water in zeolite 13X and layered beds. Chemical Engineering Science, 2004, 59(13): 2727–2743

    Article  CAS  Google Scholar 

  53. Zheng X, Ge T, Wang R. Recent progress on desiccant materials for solid desiccant cooling systems. Energy, 2014, 74: 280–294

    Article  Google Scholar 

  54. Yang R T. Adsorbents: Fundamentals and Applications. Hoboken: John Wiley & Sons, 2003, 157–190

    Book  Google Scholar 

  55. Zhang X, Qiu L. Moisture transport and adsorption on silica gel-calcium chloride composite adsorbents. Energy Conversion and Management, 2007, 48(1): 320–326

    Article  CAS  Google Scholar 

  56. Jia C, Dai Y, Wu J, Wang R. Use of compound desiccant to develop high performance desiccant cooling system. International Journal of Refrigeration, 2007, 30(2): 345–353

    Article  CAS  Google Scholar 

  57. Simonova I A, Freni A, Restuccia G, Aristov Y I. Water sorption on composite “silica modified by calcium nitrate”. Microporous and Mesoporous Materials, 2009, 122(1–3): 223–228

    Article  CAS  Google Scholar 

  58. Aristov Y I, Sapienza A, Ovoshchnikov D S, Freni A, Restuccia G. Reallocation of adsorption and desorption times for optimizing the cooling cycle parameters. International Journal of Refrigeration, 2012, 35(3): 525–531

    Article  CAS  Google Scholar 

  59. Bu X, Wang L, Huang Y. Effect of pore size on the performance of composite adsorbent. Adsorption, 2013, 19(5): 929–935

    Article  CAS  Google Scholar 

  60. Gordeeva L G, Aristov Y I, Glaznev I S. Sorption of water by sodium, copper, and magnesium sulfates dispersed into mesopores of silica gel and alumina. Russian Journal of Physical Chemistry A, 2003, 77(10): 1715–1720

    Google Scholar 

  61. Mrowiec-Białoń J, Jarzebski A B, Lachowski A I, Malinowski J J, Aristov Y I. Effective inorganic hybrid adsorbents of water vapor by the sol-gel method. Chemistry of Materials, 1997, 9(11): 2486–2490

    Article  Google Scholar 

  62. Sukhyy K M, Belyanovskaya E A, Kozlov Y N, Kolomiyets E V, Sukhyy M P. Structure and adsorption properties of the composites ‘silica gel-sodium sulphate’, obtained by sol-gel method. Applied Thermal Engineering, 2014, 64(1–2): 408–412

    Article  CAS  Google Scholar 

  63. Henninger S, Schmidt F, Henning H M. Water adsorption characteristics of novel materials for heat transformation applications. Applied Thermal Engineering, 2010, 30(13): 1692–1702

    Article  CAS  Google Scholar 

  64. Jänchen J, Ackermann D, Stach H, Brösicke W. Studies of the water adsorption on zeolites and modified mesoporous materials for seasonal storage of solar heat. Solar Energy, 2004, 76(1–3): 339–344

    Article  CAS  Google Scholar 

  65. Knez Ž, Novak Z. Adsorption of water vapor on silica, alumina, and their mixed oxide aerogels. Journal of Chemical & Engineering Data, 2001, 46(4): 858–860

    Article  CAS  Google Scholar 

  66. Chua H T, Ng K C, Chakraborty A, Oo N M, Othman M A. Adsorption characteristics of silica gel + water systems. Journal of Chemical & Engineering Data, 2002, 47(5): 1177–1181

    Article  CAS  Google Scholar 

  67. Levitskij E, Aristov Y I, Tokarev M, Parmon V. “Chemical heat accumulators”: a new approach to accumulating low potential heat. Solar Energy Materials and Solar Cells, 1996, 44(3): 219–235

    Article  CAS  Google Scholar 

  68. Gordeeva L, Tokarev M, Parmon V, Aristov Y I. Selective water sorbents for multiple application, 6. Freshwater production from the atmosphere. Reaction Kinetics and Catalysis Letters, 1998, 65(1): 153–159

    Article  CAS  Google Scholar 

  69. Yu N, Wang R, Lu Z, Wang L. Development and characterization of silica gel-LiCl composite sorbents for thermal energy storage. Chemical Engineering Science, 2014, 111: 73–84

    Article  CAS  Google Scholar 

  70. Jia C, Dai Y, Wu J, Wang R. Experimental comparison of two honeycombed desiccant wheels fabricated with silica gel and composite desiccant material. Energy Conversion and Management, 2006, 47(15–16): 2523–2534

    Article  CAS  Google Scholar 

  71. Aristov Y I, Sapienza A, Ovoshchnikov D, Freni A, Restuccia G. Reallocation of adsorption and desorption times for optimisation of cooling cycles. International Journal of Refrigeration, 2012, 35(3): 525–531

    Article  CAS  Google Scholar 

  72. Cortés F B, Chejne F, Carrasco Marín F, Pérez Cadenas A F, Moreno Castilla C. Water sorption on silica- and zeolite-supported hygroscopic salts for cooling system applications. Energy Conversion and Management, 2012, 53(1): 219–223

    Article  CAS  Google Scholar 

  73. Ponomarenko I, Glaznev I, Gubar A, Aristov Y I, Kirik S. Synthesis and water sorption properties of a new composite “CaCl2 confined into SBA-15 pores”. Microporous and Mesoporous Materials, 2010, 129(1–2): 243–250

    Article  CAS  Google Scholar 

  74. Chen H J, Cui Q, Tang Y, Chen X J, Yao H Q. Attapulgite based LiCl composite adsorbents for cooling and air conditioning applications. Applied Thermal Engineering, 2008, 28(17–18): 2187–2193

    Article  CAS  Google Scholar 

  75. Wei X, Wang W, Xiao J, Zhang L, Chen H, Ding J. Hierarchically porous aluminosilicates as the water vapor adsorbents for dehumidification. Chemical Engineering Journal, 2013, 228: 1133–1139

    Article  CAS  Google Scholar 

  76. Gordeeva L, Restuccia G, Cacciola G, Aristov Y I. Selective water sorbents for multiple applications, 5. LiBr confined in mesopores of silica gel: sorption properties. Reaction Kinetics and Catalysis Letters, 1998, 63(1): 81–88

    Article  CAS  Google Scholar 

  77. Sukhyy K M, Belyanovskaya E A, Kozlov Y N, Kolomiyets E V, Sukhyy M P. Structure and adsorption properties of the composites ‘silica gel-sodium sulphate’, obtained by sol-gel method. Applied Thermal Engineering, 2014, 64(1–2): 408–412

    Article  CAS  Google Scholar 

  78. Mintova S, Gilson J P, Valtchev V. Advances in nanosized zeolites. Nanoscale, 2013, 5(15): 6693–6703

    Article  CAS  PubMed  Google Scholar 

  79. Koohsaryan E, Anbia M. Nanosized and hierarchical zeolites: a short review. Chinese Journal of Catalysis, 2016, 37(4): 447–467

    Article  CAS  Google Scholar 

  80. Koohsaryan E, Anbia M. Facile and rapid synthesis of highly crystalline mesoporous zeolite FAU. Materials Letters, 2019, 236: 390–393

    Article  CAS  Google Scholar 

  81. Anbia M, Koohsaryan E, Borhani A. Novel hydrothermal synthesis of hierarchically-structured zeolite LTA microspheres. Materials Chemistry and Physics, 2017, 193: 380–390

    Article  CAS  Google Scholar 

  82. Dehghan R, Anbia M. Zeolites for adsorptive desulfurization from fuels: a review. Fuel Processing Technology, 2017, 167: 99–116

    Article  CAS  Google Scholar 

  83. Khabazipour M, Anbia M. Removal of hydrogen sulfide from gas streams using porous materials: a review. Industrial & Engineering Chemistry Research, 2019, 58(49): 22133–22164

    Article  CAS  Google Scholar 

  84. Li Y, Yu J. New stories of zeolite structures: their descriptions, determinations, predictions, and evaluations. Chemical Reviews, 2014, 114(14): 7268–7316

    Article  CAS  PubMed  Google Scholar 

  85. Valtchev V, Tosheva L. Porous nanosized particles: preparation, properties, and applications. Chemical Reviews, 2013, 113(8): 6734–6760

    Article  CAS  PubMed  Google Scholar 

  86. Zaarour M, Dong B, Naydenova I, Retoux R, Mintova S. Progress in zeolite synthesis promotes advanced applications. Microporous and Mesoporous Materials, 2014, 189: 11–21

    Article  CAS  Google Scholar 

  87. Maldonado M, Oleksiak M D, Chinta S, Rimer J D. Controlling crystal polymorphism in organic-free synthesis of Na-zeolites. Journal of the American Chemical Society, 2013, 135(7): 2641–2652

    Article  CAS  PubMed  Google Scholar 

  88. Collier R, Cale T, Lavan Z. Advanced desiccant materials assessment. Final report, February 1985–May 1986. PB-87-172805/XAB. 1986

  89. Kim K M, Oh H T, Lim S J, Ho K, Park Y, Lee C H. Adsorption equilibria of water vapor on zeolite 3A, zeolite 13X, and dealuminated Y zeolite. Journal of Chemical & Engineering Data, 2016, 61(4): 1547–1554

    Article  CAS  Google Scholar 

  90. Aprea P, de Gennaro B, Gargiulo N, Peluso A, Liguori B, Iucolano F, Caputo D. Sr-, Zn- and Cd-exchanged zeolitic materials as water vapor adsorbents for thermal energy storage applications. Applied Thermal Engineering, 2016, 106: 1217–1224

    Article  CAS  Google Scholar 

  91. Sharma P, Song J S, Han M H, Cho C H. GIS-NaP1 zeolite microspheres as potential water adsorption material: influence of initial silica concentration on adsorptive and physical/topological properties. Scientific Reports, 2016, 6(1): 22734–22759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Verboekend D, Keller T C, Milina M, Hauert R, Pérez Ramírez J. Hierarchy brings function: mesoporous clinoptilolite and L zeolite catalysts synthesized by tandem acid-base treatments. Chemistry of Materials, 2013, 25(9): 1947–1959

    Article  CAS  Google Scholar 

  93. Yin H, Zhu J. In situ remediation of metal contaminated lake sediment using naturally occurring, calcium-rich clay mineral-based low-cost amendment. Chemical Engineering Journal, 2016, 285:112–120

    Article  CAS  Google Scholar 

  94. Verboekend D, Keller T C, Mitchell S, Pérez Ramírez J. Hierarchical FAU- and LTA- type zeolites by post-synthetic design: a new generation of highly efficient base catalysts. Advanced Functional Materials, 2013, 23(15): 1923–1934

    Article  CAS  Google Scholar 

  95. Qian T, Li J. Synthesis of Na-A zeolite from coal gangue with the in-situ crystallization technique. Advanced Powder Technology, 2015, 26(1): 98–104

    Article  CAS  Google Scholar 

  96. Chen J, Lu X. Equilibrium and kinetics studies of Cd(II) sorption on zeolite NaX synthesized from coal gangue. Journal of Water Reuse and Desalination, 2018, 8(1): 94–101

    Article  CAS  Google Scholar 

  97. Chen J, Lu X. Synthesis and characterization of zeolites NaA and NaX from coal gangue. Journal of Material Cycles and Waste Management, 2018, 20(1): 489–495

    Article  CAS  Google Scholar 

  98. Lu X, Shi D, Chen J. Sorption of Cu2+ and Co2+ using zeolite synthesized from coal gangue: isotherm and kinetic studies. Environmental Earth Sciences, 2017, 76(17): 591–601

    Article  CAS  Google Scholar 

  99. Ge Q, Moeen M, Tian Q, Xu J, Feng K. Highly effective removal of Pb2+ in aqueous solution by Na-X zeolite derived from coal gangue. Environmental Science and Pollution Research International, 2020, 27(7): 7398–7408

    Article  CAS  PubMed  Google Scholar 

  100. Park S H, Yang J K, Kim J H, Chung C B, Seo G. Eco-friendly synthesis of zeolite A from synthesis cakes prepared by removing the liquid phase of aged synthesis mixtures. Green Chemistry, 2015, 17(6): 3571–3578

    Article  CAS  Google Scholar 

  101. Wen H, Zhou Y, Xie J, Long Z, Zhang W, Wang J. Pure-silica ZSM-22 zeolite rapidly synthesized by novel ionic liquid-directed dry-gel conversion. RSC Advances, 2014, 4(91): 49647–49654

    Article  CAS  Google Scholar 

  102. Wu Q, Wang X, Qi G, Guo Q, Pan S, Meng X, Xu J, Deng F, Fan F, Feng Z, Li C, Maurer S, Müller U, Xiao F S. Sustainable synthesis of zeolites without addition of both organotemplates and solvents. Journal of the American Chemical Society, 2014, 136(10): 4019–4025

    Article  CAS  PubMed  Google Scholar 

  103. Cheng X, Mao J, Lv X, Hua T, Cheng X, Long Y, Tang Y. Fast synthesis of nanosized zeolite beta from a low-seeded, low-templated dry gel with a seeding-steam-assisted conversion method. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(5): 1247–1251

    Article  CAS  Google Scholar 

  104. Hua Z L, Zhou J, Shi J L. Recent advances in hierarchically structured zeolites: synthesis and material performances. Chemical Communications, 2011, 47(38): 10536–10547

    Article  CAS  PubMed  Google Scholar 

  105. Zhou R, Zhong S, Lin X, Xu N. Synthesis of zeolite T by microwave and conventional heating. Microporous and Mesoporous Materials, 2009, 124(1–3): 117–122

    Article  CAS  Google Scholar 

  106. Behin J, Kazemian H, Rohani S. Sonochemical synthesis of zeolite NaP from clinoptilolite. Ultrasonics Sonochemistry, 2016, 28: 400–408

    Article  CAS  PubMed  Google Scholar 

  107. Bukhari S S, Behin J, Kazemian H, Rohani S. Conversion of coal fly ash to zeolite utilizing microwave and ultrasound energies: a review. Fuel, 2015, 140: 250–266

    Article  CAS  Google Scholar 

  108. Gordon J, Kazemian H, Rohani S. Rapid and efficient crystallization of MIL-53 (Fe) by ultrasound and microwave irradiation. Microporous and Mesoporous Materials, 2012, 162: 36–43

    Article  CAS  Google Scholar 

  109. Sabouni R, Kazemian H, Rohani S. A novel combined manufacturing technique for rapid production of IRMOF-1 using ultrasound and microwave energies. Chemical Engineering Journal, 2010, 165(3): 966–973

    Article  CAS  Google Scholar 

  110. Ng E P, Mintova S. Nanoporous materials with enhanced hydrophilicity and high water sorption capacity. Microporous and Mesoporous Materials, 2008, 114(1–3): 1–26

    Article  CAS  Google Scholar 

  111. Stach H, Mugele J, Jänchen J, Weiler E. Influence of cycle temperatures on the thermochemical heat storage densities in the systems water/microporous and water/mesoporous adsorbents. Adsorption, 2005, 11(3–4): 393–404

    Article  CAS  Google Scholar 

  112. Wang K S, Liao C C, Chu R Q, Chung T W. Equilibrium isotherms of water and ethanol vapors on starch sorbents and zeolite 3A. Journal of Chemical & Engineering Data, 2010, 55(9): 3334–3337

    Article  CAS  Google Scholar 

  113. Wang Y, LeVan M D. Adsorption equilibrium of carbon dioxide and water vapor on zeolites 5A and 13X and silica gel: pure components. Journal of Chemical & Engineering Data, 2009, 54(10): 2839–2844

    Article  CAS  Google Scholar 

  114. Kim J H, Lee C H, Kim W S, Lee J S, Kim J T, Suh J K, Lee J M. Adsorption equilibria of water vapor on alumina, zeolite 13X, and a zeolite X/activated carbon composite. Journal of Chemical & Engineering Data, 2003, 48(1): 137–141

    Article  CAS  Google Scholar 

  115. Sayılgan Ş Ç, Mobedi M, Ülkü S. Effect of regeneration temperature on adsorption equilibria and mass diffusivity of zeolite 13X-water pair. Microporous and Mesoporous Materials, 2016, 224: 9–16

    Article  CAS  Google Scholar 

  116. Hunger B, Klepel O, Kirschhock C, Heuchel M, Toufar H, Fuess H. Interaction of water with alkali-metal cation-exchanged X type zeolites: a temperature-programmed desorption (TPD) and X-ray diffraction study. Langmuir, 1999, 15(18): 5937–5941

    Article  CAS  Google Scholar 

  117. Jänchen J, Ackermann D, Weiler E, Stach H, Brösicke W. Calorimetric investigation on zeolites, AlPO4’s and CaCl2 impregnated attapulgite for thermochemical storage of heat. Thermochimica Acta, 2005, 434(1–2): 37–41

    Article  CAS  Google Scholar 

  118. Furukawa H, Gandara F, Zhang Y B, Jiang J, Queen W L, Hudson M R, Yaghi O M. Water adsorption in porous metal-organic frameworks and related materials. Journal of the American Chemical Society, 2014, 136(11): 4369–4381

    Article  CAS  PubMed  Google Scholar 

  119. Oh H T, Lim S J, Kim J H, Lee C H. Adsorption equilibria of water vapor on an alumina/zeolite 13X composite and silica gel. Journal of Chemical & Engineering Data, 2017, 62(2): 804–811

    Article  CAS  Google Scholar 

  120. Gates B C, Katzer J R, Schuit G C A. Chemistry of Catalytic Processes. New York: McGraw Hill, 1997

    Google Scholar 

  121. Peri J. A model for the surface of a silica-alumina catalyst. Journal of Catalysis, 1976, 41(2): 227–239

    Article  CAS  Google Scholar 

  122. Ribeiro A M, Sauer T P, Grande C A, Moreira R F, Loureiro J M, Rodrigues A E. Adsorption equilibrium and kinetics of water vapor on different adsorbents. Industrial & Engineering Chemistry Research, 2008, 47(18): 7019–7026

    Article  CAS  Google Scholar 

  123. Ferreira D, Magalhaes R, Taveira P, Mendes A. Effective adsorption equilibrium isotherms and breakthroughs of water vapor and carbon dioxide on different adsorbents. Industrial & Engineering Chemistry Research, 2011, 50(17): 10201–10210

    Article  CAS  Google Scholar 

  124. Serbezov A, Moore J D, Wu Y. Adsorption equilibrium of water vapor on selexsorb-cdx commercial activated alumina adsorbent. Journal of Chemical & Engineering Data, 2011, 56(5): 1762–1769

    Article  CAS  Google Scholar 

  125. Liu X J, Shi Y F, Kalbassi M A, Underwood R, Liu Y S. A comprehensive description of water vapor equilibriums on alumina F-200: adsorption, desorption, and H2O/CO2 binary adsorption. Separation and Purification Technology, 2014, 133: 276–281

    Article  CAS  Google Scholar 

  126. Liu X J, Shi Y F, Kalbassi M A, Underwood R, Liu Y S. Water vapor adsorption isotherm expressions based on capillary condensation. Separation and Purification Technology, 2013, 116: 95–100

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Research Council of Iran University of Science and Technology (Tehran).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansoor Anbia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahraminia, S., Anbia, M. & Koohsaryan, E. Dehydration of natural gas and biogas streams using solid desiccants: a review. Front. Chem. Sci. Eng. 15, 1050–1074 (2021). https://doi.org/10.1007/s11705-020-2025-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-020-2025-7

Keywords

Navigation