Skip to main content
Log in

Carbon-doped surface unsaturated sulfur enriched CoS2@rGO aerogel pseudocapacitive anode and biomass-derived porous carbon cathode for advanced lithium-ion capacitors

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

As a hybrid energy storage device of lithium-ion batteries and supercapacitors, lithium-ion capacitors have the potential to meet the demanding needs of energy storage equipment with both high power and energy density. In this work, to solve the obstacle to the application of lithium-ion capacitors, that is, the balancing problem of the electrodes kinetic and capacity, two electrodes are designed and adequately matched. For the anode, we introduced in situ carbon-doped and surface-enriched unsaturated sulfur into the graphene conductive network to prepare transition metal sulfides, which enhances the performance with a faster lithium-ion diffusion and dominant pseudocapacitive energy storage. Therefore, the lithium-ion capacitors anode material delivers a remarkable capacity of 810 mAh·g−1 after 500 cycles at 1 A·g−1. On the other hand, the biomass-derived porous carbon as the cathode also displays a superior capacity of 114.2 mAh·g−1 at 0.1 A·g−1. Benefitting from the appropriate balance of kinetic and capacity between two electrodes, the lithium-ion capacitors exhibits superior electrochemical performance. The assembled lithium-ion capacitors demonstrate a high energy density of 132.9 Wh·kg−1 at the power density of 265 W·kg−1, and 50.0 Wh·kg−1 even at 26.5 kW·kg−1. After 10000 cycles at 1 A·g−1, lithium-ion capacitors still demonstrate the high energy density retention of 81.5%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aravindan V, Gnanaraj J, Lee Y S, Madhavi S. Insertion-type electrodes for nonaqueous Li-ion capacitors. Chemical Reviews, 2014, 114(23): 11619–11635

    Article  CAS  PubMed  Google Scholar 

  2. Jiang X P, Li Z Y, Lu G J, Hu N, Ji G P, Liu W, Guo X L, Wu D, Liu X J, Xu C H. Pores enriched CoNiO2 nanosheets on graphene hollow fibers for high performance supercapacitor-battery hybrid energy storage. Electrochimica Acta, 2020, 358: 136857

    Article  CAS  Google Scholar 

  3. Wang R H, Zhao Q N, Zheng W K, Ren Z L, Hu X L, Li J, Lu L, Hu N, Molenda J, Liu X J, et al. Achieving high energy density in a 4.5 V all nitrogen-doped graphene based lithium-ion capacitor. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(34): 19909–19921

    Article  CAS  Google Scholar 

  4. Wang Y K, Liu M C, Cao J Y, Zhang H J, Kong L B, Trudgeon D P, Li X H, Walsh F C. 3D hierarchically structured CoS nanosheets: Li+ storage mechanism and application of the high-performance lithium-ion capacitors. ACS Applied Materials & Interfaces, 2020, 12(3): 3709–3718

    Article  CAS  Google Scholar 

  5. Xing T, Ouyang Y H, Zheng L P, Wang X Y, Liu H, Chen M F, Yu R Z, Wang X Y, Wu C. Free-standing ternary metallic sulphides/Ni/C-nanofiber anodes for high-performance lithium-ion capacitors. Journal of Energy Chemistry, 2020, 42: 108–115

    Article  Google Scholar 

  6. Zhan C Z, Liu W, Hu M X, Liang Q H, Yu X L, Shen Y, Lv R T, Kang F Y, Huang Z H. High-performance sodium-ion hybrid capacitors based on an interlayer-expanded MoS2/rGO composite: surpassing the performance of lithium-ion capacitors in a uniform system. NPG Asia Materials, 2018, 10(8): 775–787

    Article  CAS  Google Scholar 

  7. Wang Q F, Zou R Q, Xia W, Ma J, Qiu B, Mahmood A, Zhao R, Yang Y C, Xia D G, Xu Q. Facile synthesis of ultrasmall CoS2 nanoparticles within thin N-doped porous carbon shell for high performance lithium-ion batteries. Small, 2015, 11(21): 2511–2517

    Article  CAS  PubMed  Google Scholar 

  8. Wang H W, Guan C, Wang X F, Fan H J. A high energy and power Li-ion capacitor based on a TiO2 nanobelt array anode and a graphene hydrogel cathode. Small, 2015, 11(12): 1470–1477

    Article  CAS  PubMed  Google Scholar 

  9. Yuan X Q, Liu B C, Hou H J, Zeinu K, He Y H, Yang X R, Xue W J, He X L, Huang L, Zhu X L, et al. Facile synthesis of mesoporous graphene platelets with in situ nitrogen and sulfur doping for lithium-sulfur batteries. RSC Advances, 2017, 7(36): 22567–22577

    Article  CAS  Google Scholar 

  10. Augustyn V, Simon P, Dunn B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy & Environmental Science, 2014, 7(5): 1597–1614

    Article  CAS  Google Scholar 

  11. Wu Z C, Li B E, Xue Y J, Li J J, Zhang Y L, Gao F. Fabrication of defect-rich MoS2 ultrathin nanosheets for application in lithium-ion batteries and supercapacitors. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(38): 19445–19454

    Article  CAS  Google Scholar 

  12. Zhao D Q, Zong W J, Fan Z H, Xiong S M, Du M, Wu T H, Fang Y W, Ji F Y, Xu X. Synthesis of carbon-doped BiVO4@multi-walled carbon nanotubes with high visible-light absorption behavior, and evaluation of their photocatalytic properties. CrystEngComm, 2016, 18(47): 9007–9015

    Article  CAS  Google Scholar 

  13. Natarajan S, Lee Y S, Aravindan V. Biomass-derived carbon materials as prospective electrodes for high-energy lithium- and sodium-ion capacitors. Chemistry, an Asian Journal, 2019, 14(7): 936–951

    Article  CAS  PubMed  Google Scholar 

  14. Zhang B, Ye X C, Hou W Y, Zhao Y, Xie Y. Biomolecule-assisted synthesis and electrochemical hydrogen storage of Bi2S3 flowerlike patterns with well-aligned nanorods. Journal of Physical Chemistry B, 2006, 110(18): 8978–8985

    Article  CAS  Google Scholar 

  15. Xie X Q, Ao Z M, Su D W, Zhang J Q, Wang G X. MoS2/graphene composite anodes with enhanced performance for sodium-ion batteries: the role of the two-dimensional heterointerface. Advanced Functional Materials, 2015, 25(9): 1393–1403

    Article  CAS  Google Scholar 

  16. Wang X, Li X Y, Li Q, Li H S, Xu J, Wang H, Zhao GX, Lu L S, Lin X Y, Li H L, et al. Improved electrochemical performance based on nanostructured SnS2@CoS2-rGO composite anode for sodium-ion batteries. Nano-Micro Letters, 2018, 10(3): 46

    Article  PubMed  PubMed Central  Google Scholar 

  17. Li W D, Wang D Z, Song Z H, Gong Z J, Guo X S, Liu J, Zhang Z H, Li G C. Carbon confinement synthesis of interlayer-expanded and sulfur-enriched MoS2+x nanocoating on hollow carbon spheres for advanced Li-S batteries. Nano Research, 2019, 12(11): 2908–2917

    Article  CAS  Google Scholar 

  18. Xu Y X, Sheng K X, Li C, Shi G Q. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano, 2010, 4(7): 4324–4330

    Article  CAS  PubMed  Google Scholar 

  19. Singh V, Tiwari A, Nagaiah T C. Facet-controlled morphology of cobalt disulfide towards enhanced oxygen reduction reaction. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(45): 22545–22554

    Article  CAS  Google Scholar 

  20. Yu J X, Chen Z G, Zeng L, Ma Y Y, Feng Z, Wu Y, Lin H J, Zhao L H, He Y M. Synthesis of carbon-doped KNbO3 photocatalyst with excellent performance for photocatalytic hydrogen production. Solar Energy Materials and Solar Cells, 2018, 179: 45–56

    Article  CAS  Google Scholar 

  21. Tang J H, Shen J F, Li N, Ye M X. A free template strategy for the synthesis of CoS2-reduced graphene oxide nanocomposite with enhanced electrode performance for supercapacitors. Ceramics International, 2014, 40(A): 15411–15419

    Article  CAS  Google Scholar 

  22. Meng Z D, Zhu L, Ullah K, Ye S, Oh W C. Detection of oxygen species generated by CNT photosensitized CoS2 nanocomposites. Applied Surface Science, 2013, 286: 261–268

    Article  CAS  Google Scholar 

  23. Ye J B, Ma L, Chen W X, Ma Y J, Huang F H, Gao C, Lee J Y. Supramolecule-mediated synthesis of MoS2/reduced graphene oxide composites with enhanced electrochemical performance for reversible lithium storage. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(13): 6884–6893

    Article  CAS  Google Scholar 

  24. Ma L, Huang G C, Chen W X, Wang Z, Ye J B, Li H Y, Chen D Y, Lee J Y. Cationic surfactant-assisted hydrothermal synthesis of few-layer molybdenum disulfide/graphene composites: microstructure and electrochemical lithium storage. Journal of Power Sources, 2014, 264: 262–271

    Article  CAS  Google Scholar 

  25. Zhu L, Susac D, Teo M, Wong K C, Wong P C, Parsons R R, Bizzotto D, Mitchell K A R, Campbell S A. Investigation of CoS2-based thin films as model catalysts for the oxygen reduction reaction. Journal of Catalysis, 2008, 258(1): 235–242

    Article  CAS  Google Scholar 

  26. Yang Y, Zhang K, Lin H, Li X, Chan H C, Yang L, Gao Q. MoS2-Ni3S2 heteronanorods as efficient and stable bifunctional electro-catalysts for overall water splitting. ACS Catalysis, 2017, 7(4): 2357–2366

    Article  CAS  Google Scholar 

  27. Jiao Z, Zhao P D, He Y C, Ling L, Sun W F, Cheng L L. Mesoporous yolk-shell CoS2/nitrogen-doped carbon dodecahedron nanocomposites as efficient anode materials for lithium-ion batteries. Journal of Alloys and Compounds, 2019, 809: 151854

    Article  CAS  Google Scholar 

  28. Yuan J, Zhu J W, Wang R H, Deng Y X, Zhang S, Yao C, Li Y J, Li X L, Xu C H. 3D few-layered MoS2/graphene hybrid aerogels on carbon fiber papers: a free-standing electrode for high-performance lithium/sodium-ion batteries. Chemical Engineering Journal, 2020, 398:125592

    Article  CAS  Google Scholar 

  29. He J R, Chen Y F, Li P J, Fu F, Wang Z G, Zhang W L. Self-assembled CoS2 nanoparticles wrapped by CoS2-quantum-dots-anchored graphene nanosheets as superior-capability anode for lithium-ion batteries. Electrochimica Acta, 2015, 182: 424–429

    Article  CAS  Google Scholar 

  30. Zhang Y H, Wang N N, Sun C H, Lu Z X, Xue P, Tang B, Bai Z C, Dou S X. 3D spongy CoS2 nanoparticles/carbon composite as highperformance anode material for lithium/sodium ion batteries. Chemical Engineering Journal, 2018, 332: 370–376

    Article  CAS  Google Scholar 

  31. Wang H C, Cui Z, Fan C Y, Liu S Y, Shi Y H, WuX L, Zhang J P. 3D porous CoS2 hexadecahedron derived from MOC toward ultrafast and long-lifespan lithium storage. Chemistry (Weinheim an der Bergstrasse, Germany), 2018, 24(26): 6798–6803

    CAS  Google Scholar 

  32. Fan S W, Li G D, Cai F P, Yang G. Synthesis of porous Ni-doped CoSe2/C nanospheres towards high-rate and long-term sodium-ion half/full batteries. Chemistry (Weinheim an der Bergstrasse, Germany), 2020, 26(39): 8579–8587

    CAS  Google Scholar 

  33. Hu B, Wang K, Wu L H, Yu S H, Antonietti M, Titirici M M. Engineering carbon materials from the hydrothermal carbonization process of biomass. Advanced Materials, 2010, 22(7): 813–828

    Article  CAS  PubMed  Google Scholar 

  34. Falco C, Baccile N, Titirici M M. Morphological and structural differences between glucose, cellulose and lignocellulosic biomass derived hydrothermal carbons. Green Chemistry, 2011, 13(11): 3273–3281

    Article  CAS  Google Scholar 

  35. Hoekman S K, Broch A, Robbins C. Hydrothermal carbonization (HTC) of lignocellulosic biomass. Energy & Fuels, 2011, 25(4): 1802–1810

    Article  CAS  Google Scholar 

  36. Shu Y, Bai Q H, Fu G X, Xiong Q C, Li C, Ding H F, Shen Y H, Uyama H. Hierarchical porous carbons from polysaccharides carboxymethyl cellulose, bacterial cellulose, and citric acid for supercapacitor. Carbohydrate Polymers, 2020, 227: 115346

    Article  CAS  PubMed  Google Scholar 

  37. Shang Y P, Hu X D, Li X, Cai S, Liang G C, Zhao J M, Zheng C M, Sun X H. A facile synthesis of nitrogen-doped hierarchical porous carbon with hollow sphere structure for high-performance super-capacitors. Journal of Materials Science, 2019, 54(19): 12747–12757

    Article  CAS  Google Scholar 

  38. Zou Z M, Jiang C H. Hierarchical porous carbons derived from leftover rice for high performance supercapacitors. Journal of Alloys and Compounds, 2020, 815: 152280

    Article  CAS  Google Scholar 

  39. Liu Y, Zhang M Y, Wang L Q, Hou Y J, Guo C X, Xin H Y, Xu S. A biomass carbon material with microtubule bundling and natural O-doping derived from goldenberry calyx and its electrochemical performance in supercapacitor. Chinese Chemical Letters, 2020, 31(3): 805–808

    Article  CAS  Google Scholar 

  40. Yu X, Park H S. Sulfur-incorporated, porous graphene films for high performance flexible electrochemical capacitors. Carbon, 2014, 77: 59–65

    Article  CAS  Google Scholar 

  41. Li Y J, Wang G L, Wei T, Fan Z J, Yan P. Nitrogen and sulfur codoped porous carbon nanosheets derived from willow catkin for supercapacitors. Nano Energy, 2016, 19: 165–175

    Article  CAS  Google Scholar 

  42. Biswal M, Banerjee A, Deo M, Ogale S. From dead leaves to high energy density supercapacitors. Energy & Environmental Science, 2013, 6(4): 1249–1259

    Article  CAS  Google Scholar 

  43. Lillo-Rodenas M A, Cazorla-Amoros D, Linares-Solano A. Understanding chemical reactions between carbons and NaOH and KOH: an insight into the chemical activation mechanism. Carbon, 2003, 41(2): 267–275

    Article  CAS  Google Scholar 

  44. Aida T, Yamada K, Morita M. An advanced hybrid electrochemical capacitor that uses a wide potential range at the positive electrode. Electrochemical and Solid-State Letters, 2006, 9(12): 534–536

    Article  Google Scholar 

  45. Ding J, Wang H L, Li Z, Cui K, Karpuzov D, Tan X H, Kohandehghan A, Mitlin D. Peanut shell hybrid sodium ion capacitor with extreme energy-power rivals lithium ion capacitors. Energy & Environmental Science, 2015, 8(3): 941–955

    Article  CAS  Google Scholar 

  46. Luo J M, Zhang W K, Yuan H D, Jin C B, Zhang L Y, Huang H, Liang C, Xia Y, Zhang J, Gan Y P, Tao X. Pillared structure design of MXene with ultralarge interlayer spacing for high-performance lithium-ion capacitors. ACS Nano, 2017, 11(3): 2459–2469

    Article  CAS  PubMed  Google Scholar 

  47. Su J T, Wu Y J, Huang C L, Chen Y A, Cheng H Y, Cheng P Y, Hsieh C T, Lu S Y. Nitrogen-doped carbon nanoboxes as high rate capability and long-life anode materials for high-performance Li-ion capacitors. Chemical Engineering Journal, 2020, 396: 125314

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 51772205 and 51772208), and the General Program of Municipal Natural Science Foundation of Tianjin (Grant Nos. 17JCYBJC17000 and 17JCYBJC22700).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaohong Sun or Chunming Zheng.

Electronic Supplementary Material

11705_2021_2086_MOESM1_ESM.pdf

Carbon-doped surface unsaturated sulfur enriched CoS2@rGO aerogel pseudocapacitive anode and biomass-derived porous carbon cathode for advanced lithium-ion capacitors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, Y., Sun, X., Chen, Z. et al. Carbon-doped surface unsaturated sulfur enriched CoS2@rGO aerogel pseudocapacitive anode and biomass-derived porous carbon cathode for advanced lithium-ion capacitors. Front. Chem. Sci. Eng. 15, 1500–1513 (2021). https://doi.org/10.1007/s11705-021-2086-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-021-2086-2

Keywords

Navigation