Skip to main content
Log in

Gas marbles: ultra-long-lasting and ultra-robust bubbles formed by particle stabilization

  • Views & Comments
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Bubbles and foams are ubiquitous in daily life and industrial processes. Studying their dynamic behaviors is of key importance for foam manufacturing processes in food packaging, cosmetics and pharmaceuticals. Bare bubbles are inherently fragile and transient; enhancing their robustness and shelf lives is an ongoing challenge. Their rupture can be attributed to liquid evaporation, thin film drainage and the nuclei of environmental dust. Inspired by particle-stabilized interfaces in Pickering emulsions, armored bubbles and liquid marble, bubbles are protected by an enclosed particle-entrapping liquid thin film, and the resultant soft object is termed gas marble. The gas marble exhibits mechanical strength orders of magnitude higher than that of soap bubbles when subjected to overpressure and underpressure, owing to the compact particle monolayer straddling the surface liquid film. By using a water-absorbent glycerol solution, the resulting gas marble can persist for 465 d in normal atmospheric settings. This particle-stabilizing approach not only has practical implications for foam manufacturing processes but also can inspire the new design and fabrication of functional biomaterials and biomedicines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang J, Nguyen A V, Farrokhpay S. A critical review of the growth, drainage and collapse of foams. Advances in Colloid and Interface Science, 2016, 228: 55–70

    Article  CAS  Google Scholar 

  2. Hill C, Eastoe J. Foams: from nature to industry. Advances in Colloid and Interface Science, 2017, 247: 496–513

    Article  CAS  Google Scholar 

  3. Lubetkin S D. The fundamentals of bubble evolution. Chemical Society Reviews, 1995, 24(4): 243–250

    Article  Google Scholar 

  4. Dollet B, Marmottant P, Garbin V. Bubble dynamics in soft and biological matter. Annual Review of Fluid Mechanics, 2019, 51(1): 331–355

    Article  Google Scholar 

  5. Debrégeas G, de Gennes P G, Brochard-Wyart F. The life and death of “bare” viscous bubbles. Science, 1998, 279(5357): 1704–1707

    Article  Google Scholar 

  6. Frazier S, Jiang X, Burton J C. How to make a giant bubble. Physical Review Fluids, 2020, 5(1): 013304

    Article  Google Scholar 

  7. Schwartz L W, Roy R V. Modeling draining flow in mobile and immobile soap films. Journal of Colloid and Interface Science, 1999, 218(1): 309–323

    Article  CAS  Google Scholar 

  8. Roux A, Duchesne A, Baudoin M. Everlasting bubbles and liquid films resisting drainage, evaporation, and nuclei-induced bursting. Physical Review Fluids, 2022, 7(1): L011601

    Article  Google Scholar 

  9. Ramsden W, Gotch F. Separation of solids in the surface-layers of solutions and ‘suspensions’; (observations on surface-membranes, bubbles, emulsions, and mechanical coagulation); preliminary account. Proceedings of the Royal Society of London, 1904, 72(477–486): 156–164

    Google Scholar 

  10. Pickering S U. CXCVI—emulsions. Journal of the Chemical Society, Transactions, 1907, 91: 2001–2021

    Article  Google Scholar 

  11. Cui M, Emrick T, Russell T P. Stabilizing liquid drops in nonequilibrium shapes by the interfacial jamming of nanoparticles. Science, 2013, 342(6157): 460–463

    Article  CAS  Google Scholar 

  12. Dinsmore A D, Hsu M F, Nikolaides M G, Marquez M, Bausch A R, Weitz D A. Colloidosomes: selectively permeable capsules composed of colloidal particles. Science, 2002, 298(5595): 1006–1009

    Article  CAS  Google Scholar 

  13. Kaz D M, McGorty R, Mani M, Brenner M P, Manoharan V N. Physical ageing of the contact line on colloidal particles at liquid interfaces. Nature Materials, 2012, 11(2): 138–142

    Article  CAS  Google Scholar 

  14. Li M, Harbron R L, Weaver J V M, Binks B P, Mann S. Electrostatically gated membrane permeability in inorganic protocells. Nature Chemistry, 2013, 5(6): 529–536

    Article  CAS  Google Scholar 

  15. Rozynek Z, Mikkelsen A, Dommersnes P, Fossum J O. Electroformation of Janus and patchy capsules. Nature Communications, 2014, 5(1): 3945

    Article  CAS  Google Scholar 

  16. Wu J, Ma G H. Recent studies of pickering emulsions: particles make the difference. Small, 2016, 12(34): 4633–4648

    Article  CAS  Google Scholar 

  17. Bala Subramaniam A, Abkarian M, Mahadevan L, Stone H A. Non-spherical bubbles. Nature, 2005, 438(7070): 930

    Article  CAS  Google Scholar 

  18. Bala Subramaniam A, Abkarian M, Mahadevan L, Stone H A. Mechanics of interfacial composite materials. Langmuir, 2006, 22(24): 10204–10208

    Article  Google Scholar 

  19. Bala Subramaniam A, Abkarian M, Stone H A. Controlled assembly of jammed colloidal shells on fluid droplets. Nature Materials, 2005, 4(7): 553–556

    Article  Google Scholar 

  20. Huerre A, De Corato M, Garbin V. Dynamic capillary assembly of colloids at interfaces with 10000 g accelerations. Nature Communications, 2018, 9(1): 3620

    Article  Google Scholar 

  21. Abkarian M, Bala Subramaniam A, Kim S H, Larsen R J, Yang S M, Stone H A. Dissolution arrest and stability of particle-covered bubbles. Physical Review Letters, 2007, 99(18): 188301

    Article  Google Scholar 

  22. Pierre J, Dollet B, Leroy V. Resonant acoustic propagation and negative density in liquid foams. Physical Review Letters, 2014, 112(14): 148307

    Article  Google Scholar 

  23. Taccoen N, Lequeux F, Gunes D Z, Baroud C N. Probing the mechanical strength of an armored bubble and its implication to particle-stabilized foams. Physical Review X, 2016, 6(1): 011010

    Article  Google Scholar 

  24. Aussillous P, Quéré D. Liquid marbles. Nature, 2001, 411(6840): 924–927

    Article  CAS  Google Scholar 

  25. Mahadevan L. Non-stick water. Nature, 2001, 411(6840): 895–896

    Article  CAS  Google Scholar 

  26. Rong X, Ettelaie R, Lishchuk S V, Cheng H, Zhao N, Xiao F, Cheng F, Yang H. Liquid marble-derived solid—liquid hybrid superparticles for CO2 capture. Nature Communications, 2019, 10(1): 1854

    Article  Google Scholar 

  27. Xin Z, Skrydstrup T. Liquid marbles: a promising and versatile platform for miniaturized chemical reactions. Angewandte Chemie International Edition, 2019, 58(35): 11952–11954

    Article  CAS  Google Scholar 

  28. Anyfantakis M, Jampani V S R, Kizhakidathazhath R, Binks B P, Lagerwall J P F. Responsive photonic liquid marbles. Angewandte Chemie International Edition, 2020, 59(43): 19260–19267

    Article  CAS  Google Scholar 

  29. Vialetto J, Hayakawa M, Kavokine N, Takinoue M, Varanakkottu S N, Rudiuk S, Anyfantakis M, Morel M, Baigl D. Magnetic actuation of drops and liquid marbles using a deformable paramagnetic liquid substrate. Angewandte Chemie International Edition, 2017, 56(52): 16565–16570

    Article  CAS  Google Scholar 

  30. Sheng L, Zhang J, Liu J. Diverse transformations of liquid metals between different morphologies. Advanced Materials, 2014, 26(34): 6036–6042

    Article  CAS  Google Scholar 

  31. Hatti-Kaul R. Aqueous two-phase systems. Molecular Biotechnology, 2001, 19(3): 269–277

    Article  CAS  Google Scholar 

  32. Albertsson P E R Å. Partition of proteins in liquid polymer-polymer two-phase systems. Nature, 1958, 182(4637): 709–711

    Article  CAS  Google Scholar 

  33. Chao Y, Shum H C. Emerging aqueous two-phase systems: from fundamentals of interfaces to biomedical applications. Chemical Society Reviews, 2020, 49(1): 114–142

    Article  CAS  Google Scholar 

  34. Balakrishnan G, Nicolai T, Benyahia L, Durand D. Particles trapped at the droplet interface in water-in-water emulsions. Langmuir, 2012, 28(14): 5921–5926

    Article  CAS  Google Scholar 

  35. Song Y, Shimanovich U, Michaels T C T, Ma Q, Li J, Knowles T P J, Shum H C. Fabrication of fibrillosomes from droplets stabilized by protein nanofibrils at all-aqueous interfaces. Nature Communications, 2016, 7(1): 12934

    Article  CAS  Google Scholar 

  36. Song Y, Michaels T C T, Ma Q, Liu Z, Yuan H, Takayama S, Knowles T P J, Shum H C. Budding-like division of all-aqueous emulsion droplets modulated by networks of protein nanofibrils. Nature Communications, 2018, 9(1): 2110

    Article  Google Scholar 

  37. Cervantes-Álvarez A M, Escobar-Ortega Y Y, Sauret A, Pacheco-Vázquez F. Air entrainment and granular bubbles generated by a jet of grains entering water. Journal of Colloid and Interface Science, 2020, 574: 285–292

    Article  Google Scholar 

  38. Liu Z, Yang T, Huang Y, Liu Y, Chen L, Deng L, Shum H C, Kong T. Electrocontrolled liquid marbles for rapid miniaturized organic reactions. Advanced Functional Materials, 2019, 29(19): 1901101

    Article  Google Scholar 

  39. Geyer F, Asaumi Y, Vollmer D, Butt H J, Nakamura Y, Fujii S. Polyhedral liquid marbles. Advanced Functional Materials, 2019, 29(25): 1808826

    Article  Google Scholar 

  40. Li X, Shi H, Wang Y, Wang R, Huang S, Huang J, Geng X, Zang D. Liquid shaping based on liquid pancakes. Advanced Materials Interfaces, 2018, 5(2): 1701139

    Article  Google Scholar 

  41. Binks B P, Horozov T S. Colloidal Particles at Liquid Interfaces. Cambridge: Cambridge University Press, 2006

    Book  Google Scholar 

  42. Sun Z, Wu B, Ren Y, Wang Z, Zhao C X, Hai M, Weitz D A, Chen D. Diverse particle carriers prepared by co-precipitation and phase separation: formation and applications. ChemPlusChem, 2021, 86(1): 49–58

    Article  CAS  Google Scholar 

  43. Fujiwara J, Geyer F, Butt H J, Hirai T, Nakamura Y, Fujii S. Liquid marbles: shape-designable polyhedral liquid marbles/plasticines stabilized with polymer plates. Advanced Materials Interfaces, 2020, 7(24): 2070133

    Article  Google Scholar 

  44. Sun Z, Yan X, Xiao Y, Hu L, Eggersdorfer M, Chen D, Yang Z, Weitz D A. Pickering emulsions stabilized by colloidal surfactants: role of solid particles. Particuology, 2022, 64: 153–163

    Article  CAS  Google Scholar 

  45. Binks B P, Fletcher P D I. Particles adsorbed at the oil-water interface: a theoretical comparison between spheres of uniform wettability and “Janus” particles. Langmuir, 2001, 17(16): 4708–4710

    Article  CAS  Google Scholar 

  46. Chen D, Amstad E, Zhao C X, Cai L, Fan J, Chen Q, Hai M, Koehler S, Zhang H, Liang F, Yang Z, Weitz D A. Biocompatible amphiphilic hydrogel-solid dimer particles as colloidal surfactants. ACS Nano, 2017, 11(12): 11978–11985

    Article  CAS  Google Scholar 

  47. Sun Z, Yang C, Wang F, Wu B, Shao B, Li Z, Chen D, Yang Z, Liu K. Biocompatible and pH-responsive colloidal surfactants with tunable shape for controlled interfacial curvature. Angewandte Chemie International Edition, 2020, 59(24): 9365–9369

    Article  CAS  Google Scholar 

  48. Timounay Y, Pitois O, Rouyer F. Gas marbles: much stronger than liquid marbles. Physical Review Letters, 2017, 118(22): 228001

    Article  Google Scholar 

  49. Timounay Y, Ou E, Lorenceau E, Rouyer F. Low gas permeability of particulate films slows down the aging of gas marbles. Soft Matter, 2017, 13(42): 7717–7720

    Article  CAS  Google Scholar 

  50. Liu Z, Zhang Y, Chen C, Yang T, Wang J, Guo L, Liu P, Kong T. Larger stabilizing particles make stronger liquid marble. Small, 2019, 15(3): 1804549

    Google Scholar 

  51. Saczek J, Yao X, Zivkovic V, Mamlouk M, Wang D, Pramana S S, Wang S. Long-lived liquid marbles for green applications. Advanced Functional Materials, 2021, 31(35): 2011198

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 22078197 and 52172283) and the Natural Science Foundation of Guangdong Province (Grant No. 2021A1515012506). Zhou Liu and Tiantian Kong are also thankful for the support of Shenzhen Overseas High-level Talents Key Foundation for Innovation and Entrepreneurship. Ho Cheung Shum is supported in part by the Croucher Foundation through the Croucher Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhou Liu, Ho Cheung Shum or Tiantian Kong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Yang, K., Liu, Z. et al. Gas marbles: ultra-long-lasting and ultra-robust bubbles formed by particle stabilization. Front. Chem. Sci. Eng. 16, 1681–1687 (2022). https://doi.org/10.1007/s11705-022-2180-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-022-2180-0

Keywords

Navigation