Skip to main content
Log in

One-step gas-phase construction of carbon-coated Fe3O4 nanoparticle/carbon nanotube composite with enhanced electrochemical energy storage

  • Research Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

Carbon nanotubes (CNTs) as superior support materials for functional nanoparticles (NPs) have been widely demonstrated. Nevertheless, the homogeneous loading of these NPs is still frustrated due to the inert surface of CNTs. In this work, a facile gas-phase pyrolysis strategy that the mixture of ferrocene and CNTs are confined in an isolated reactor with rising temperature is developed to fabricate a carbon-coated Fe3O4 nanoparticle/carbon nanotube (Fe3O4@C/CNT) composite. It is found the ultra-small Fe3O4 NPs (<10 nm) enclosed in a thin carbon layer are uniformly anchored on the surface of CNTs. These structural benefits result in the excellent lithium-ion storage performances of the Fe3O4@C/CNT composite. It delivers a stable reversible capacity of 861 mA ·h·g−1 at the current density of 100 mA·g−1 after 100 cycles. The capacity retention reaches as high as 54.5% even at 6000 mA·g−1. The kinetic analysis indicates that the featured structural modification improves the surface condition of the CNT matrix, and contributes to greatly decreased interface impendence and faster charge transfer. In addition, the post-morphology observation of the tested sample further confirms the robustness of the Fe3O4@C/CNT configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Deng K Q, Li C X, Qiu X Y, et al. Synthesis of cobalt hexacyanoferrate decorated graphene oxide/carbon nanotubes-COOH hybrid and their application for sensitive detection ofhydrazine. Electrochimica Acta, 2015, 174: 1096–1103

    Article  CAS  Google Scholar 

  2. Beitollahi H, Movahedifar F, Tajik S, et al. A review on the effects of introducing CNTs in the modification process of electrochemical sensors. Electroanalysis, 2019, 31(7): 1195–1203

    Article  CAS  Google Scholar 

  3. Wu L, Zhang X J, Wang M H, et al. Preparation of Cu2O/CNTs composite and its application as sensing platform for detecting nitrite in water environment. Measurement, 2018, 128: 189–196

    Article  Google Scholar 

  4. Chen Z H, Ma Z P, Song J J, et al. Novel one-step synthesis of wool-ball-like Ni-carbon nanotubes composite cathodes with favorable electrocatalytic activity for hydrogen evolution reaction in alkaline solution. Journal of Power Sources, 2016, 324: 86–96

    Article  CAS  Google Scholar 

  5. Wu S S, Dai W L. Microwave-hydrothermal synthesis of SnO2–CNTs hybrid nanocomposites with visible light photocatalytic activity. Nanomaterials, 2017, 7(3): 54

    Article  CAS  Google Scholar 

  6. Song Y J, Ren J T, Yuan G, et al. Facile synthesis of Mo2C nanoparticles on N-doped carbon nanotubes with enhanced electrocatalytic activity for hydrogen evolution and oxygen reduction reactions. Journal of Energy Chemistry, 2019, 38: 68–77

    Article  Google Scholar 

  7. Wu J Z, Li X Y, Zhu Y R, et al. Facile synthesis of MoO2/CNTs composites for high-performance supercapacitor electrodes. Ceramics International, 2016, 42(7): 9250–9256

    Article  CAS  Google Scholar 

  8. Sun L M, Wang X H, Wang Y R, et al. Roles of carbon nanotubes in novel energy storage devices. Carbon, 2017, 122: 462–474

    Article  CAS  Google Scholar 

  9. Hu A, Long J, Shu C, et al. Three-dimensional interconnected network architecture with homogeneously dispersed carbon nanotubes and layered MoS2 as a highly efficient cathode catalyst for lithium-oxygen battery. ACS Applied Materials & Interfaces, 2018, 10(40): 34077–34086

    Article  CAS  Google Scholar 

  10. Xu Y, Feng J D, Chen X C, et al. Beaded structured CNTs–Fe3O4@C with low Fe3O4 content as anode materials with extra enhanced performances in lithium ion batteries. RSC Advances, 2015, 5(37): 28864–28869

    Article  CAS  Google Scholar 

  11. Luo D W, Lin F, Xiao W D, et al. Silica aerogels modified SnSb/CNTs as high cycling performance anode materials for lithium batteries. Transactions of the Indian Ceramic Society, 2016, 75(3): 161–165

    Article  CAS  Google Scholar 

  12. Wang Z Y, Zhang S G, Yue L C, et al. Synthesis of Co3O4 nanocubes/CNTs composite with enhanced sodium storage performance. Solid State Ionics, 2017, 312: 32–37

    Article  CAS  Google Scholar 

  13. Chen H, Jia B E, Lu X, et al. Two-dimensional SnSe2/CNTs hybrid nanostructures as anode materials for high-performance lithium-ion batteries. Chemistry, 2019, 25(42): 9973–9983

    Article  CAS  Google Scholar 

  14. Liu P, Ru Q, Zheng P M, et al. One-step synthesis of Zn2GeO4/CNT-O hybrid with superior cycle stability for supercapacitor electrodes. Chemical Engineering Journal, 2019, 374: 29–38

    Article  CAS  Google Scholar 

  15. Yue L C, Zhang S G, Zhao H Q, et al. One-pot synthesis CoFe2O4/CNTs composite for asymmetric supercapacitor electrode. Solid State Ionics, 2019, 329: 15–24

    Article  CAS  Google Scholar 

  16. Zhang R Z, Palumbo A, Kim J C, et al. Flexible graphene-, graphene-oxide-, and carbon-nanotube-based supercapacitors and batteries. Annalen der Physik, 2019, 531(10): 1800507

    Article  CAS  Google Scholar 

  17. Lun J, Wu T, Amine K. State-of-the-art characterization techniques for advanced lithium-ion batteries. Nature Energy, 2017, 2(3): 17011

    Article  CAS  Google Scholar 

  18. Deng D, Kim M, Lee J, et al. Green energy storage materials: Nanostructured TiO2 and Sn-based anodes for lithium-ion batteries. Energy & Environmental Science, 2009, 2(8): 818–837

    Article  CAS  Google Scholar 

  19. Deng D. Li-ion batteries: basics, progress, and challenges. Energy Science & Engineering, 2015, 3(5): 385–418

    Article  Google Scholar 

  20. Chen Y M, Yu L, Lou X W. Hierarchical tubular structures composed of Co3O4 hollow nanoparticles and carbon nanotubes for lithium storage. Angewandte Chemie International Edition, 2016, 55(20): 5990–5993

    Article  CAS  Google Scholar 

  21. Hao S J, Zhang B W, Ball S, et al. Porous and hollow NiO microspheres for high capacity and long-life anode materials of Li-ion batteries. Materials & Design, 2016, 92: 160–165

    Article  CAS  Google Scholar 

  22. Kumar R, Singh R K, Alaferdov A V, et al. Rapid and controllable synthesis of Fe3O4 octahedral nanocrystals embedded-reduced graphene oxide using microwave irradiation for high performance lithium-ion batteries. Electrochimica Acta, 2018, 281: 78–87

    Article  CAS  Google Scholar 

  23. Xu L, Sitinamaluwa H, Li H, et al. Low cost and green preparation process for α-Fe2O3@gum arabic electrode for high performance sodium ion batteries. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2017, 5(5): 2102–2109

    Article  CAS  Google Scholar 

  24. He C, Wu S, Zhao N, et al. Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material. ACS Nano, 2013, 7(5): 4459–4469

    Article  CAS  Google Scholar 

  25. Duan L H, Huang Y D, Jia D Z, et al. Fe3O4 fuzzy spheroids as anode materials for lithium-ion batteries. Materials Letters, 2012, 71: 151–153

    Article  CAS  Google Scholar 

  26. Han D D, Guo G N, Yan Y C, et al. Pomegranate-like, carbon-coated Fe3O4 nanoparticle superparticles for high-performance lithium storage. Energy Storage Materials, 2018, 10: 32–39

    Article  Google Scholar 

  27. Liang X, Gao G H, Liu Y D, et al. Carbon nanotubes/vanadium oxide composites as cathode materials for lithium-ion batteries. Journal of Sol-Gel Science and Technology, 2017, 82(1): 224–232

    Article  CAS  Google Scholar 

  28. Ren J G, Yang J B, Abouimrane A, et al. SnO2 nanocrystals deposited on multiwalled carbon nanotubes with superior stability as anode material for Li-ion batteries. Journal of Power Sources, 2011, 196(20): 8701–8705

    Article  CAS  Google Scholar 

  29. Wenelska K, Neef C, Schlestein L, et al. Carbon nanotubes decorated by mesoporous cobalt oxide as electrode material for lithium-ion batteries. Chemical Physics Letters, 2015, 635: 185–189

    Article  CAS  Google Scholar 

  30. Xu X B, Geng H Z, Meng Y, et al. Synthesis and optimization of tin dioxide/functionalized multi-walled carbon nanotube composites as anode in lithium-ion battery. Materials Chemistry and Physics, 2015, 153: 155–160

    Article  CAS  Google Scholar 

  31. Zhuo L H, Wu Y Q, Ming J, et al. Facile synthesis of a Co3O4–carbon nanotube composite and its superior performance as an anode material for Li-ion batteries. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2013, 1(4): 1141–1147

    Article  CAS  Google Scholar 

  32. Abbas S M, Ali S, Niaz N A, et al. Superior electrochemical performance of mesoporous Fe3O4/CNT nanocomposites as anode material for lithium ion batteries. Journal of Alloys and Compounds, 2014, 611: 260–266

    Article  CAS  Google Scholar 

  33. Yang L, Hu J H, Dong A G, et al. Novel Fe3O4–CNTs nanocomposite for Li-ion batteries with enhanced electrochemical performance. Electrochimica Acta, 2014, 144: 235–242

    Article  CAS  Google Scholar 

  34. Li J X, Li Y H, Chen X C, et al. Selective synthesis of magnetite nanospheres with controllable morphologies on CNTs and application to lithium-ion batteries. Physica Status Solidi A: Applications and Materials Science, 2019, 216(11): 1800924

    Article  CAS  Google Scholar 

  35. Xie X Q, Zhao M Q, Anasori B, et al. Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices. Nano Energy, 2016, 26: 513–523

    Article  CAS  Google Scholar 

  36. Li D, Gong Y, Pan C. Facile synthesis of hybrid CNTs/NiCo2S4 composite for high performance supercapacitors. Scientific Reports, 2016, 6: 29788

    Article  Google Scholar 

  37. Lv X X, Deng J J, Wang J, et al. Carbon-coated α-Fe2O3 nanostructures for efficient anode of Li-ion battery. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(9): 5183–5188

    Article  CAS  Google Scholar 

  38. Brandt A, Balducci A. Ferrocene as precursor for carbon-coated α-Fe2O3 nano-particles for rechargeable lithium batteries. Journal of Power Sources, 2013, 230: 44–49

    Article  CAS  Google Scholar 

  39. Petnikota S, Marka S K, Banerjee A, et al. Graphenothermal reduction synthesis of ‘exfoliated graphene oxide/iron(II) oxide’ composite for anode application in lithium ion batteries. Journal of Power Sources, 2015, 293: 253–263

    Article  CAS  Google Scholar 

  40. Gao G, Zhang Q, Cheng X B, et al. Ultrafine ferroferric oxide nanoparticles embedded into mesoporous carbon nanotubes for lithium ion batteries. Scientific Reports, 2015, 5: 17553

    Article  CAS  Google Scholar 

  41. Huang L, Cai J S, He Y, et al. Structure and electrochemical performance of nanostructured Sn–Co alloy/carbon nanotube composites as anodes for lithium ion batteries. Electrochemistry Communications, 2009, 11(5): 950–953

    Article  CAS  Google Scholar 

  42. Qi W, Li X, Li H, et al. Sandwich-structured nanocomposites of N-doped graphene and nearly monodisperse Fe3O4 nanoparticles as high-performance Li-ion battery anodes. Nano Research, 2017, 10(9): 2923–2933

    Article  CAS  Google Scholar 

  43. Fan X L, Shao J, Xiao X Z, et al. Carbon encapsulated 3D hierarchical Fe3O4 spheres as advanced anode materials with long cycle lifetimes for lithium-ion batteries. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2 (35): 14641–14648

    Article  CAS  Google Scholar 

  44. Cao Z J, Ma X B. Encapsulated Fe3O4 into tubular mesoporous carbon as a superior performance anode material for lithium-ion batteries. Journal of Alloys and Compounds, 2020, 815: 152542

    Article  CAS  Google Scholar 

  45. Wang R, Li B, Lai L, et al. 3D urchin-like architectures assembled by MnS nanorods encapsulated in N-doped carbon tubes for superior lithium storage capability. Chemical Engineering Journal, 2019, 355: 752–759

    Article  CAS  Google Scholar 

  46. Gu S L, Zhu A P. Graphene nanosheets loaded Fe3O4 nanoparticles as a promising anode material for lithium ion batteries. Journal of Alloys and Compounds, 2020, 813: 152160

    Article  CAS  Google Scholar 

  47. Liu J, Wen Y, Wang Y, et al. Carbon-encapsulated pyrite as stable and earth-abundant high energy cathode material for rechargeable lithium batteries. Advanced Materials, 2014, 26(34): 6025–6030

    Article  CAS  Google Scholar 

  48. Wang X J, Ma J Y, Wang J M, et al. N-doped hollow carbon nano-fibers anchored hierarchical FeP nanosheets as high-performance anode for potassium-ion batteries. Journal of Alloys and Compounds, 2020, 821: 153268

    Article  CAS  Google Scholar 

  49. Zhao Y, Wang J J, Ma C L, et al. Cr2O3 ultrasmall nanoparticles filled carbon nanocapsules deriving from Cr(VI) for enhanced lithium storage. Chemical Physics Letters, 2018, 704: 31–36

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 51702191), the Natural Science Foundation of Shanxi Province (Grant No. 201701D221062), the Scientific and Technological Innovation Programs of High Education Institutions in Shanxi (Grant No. 2017110), and the Shanxi “1331 Project” Key Innovative Research Team.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Yang, L. & Ma, C. One-step gas-phase construction of carbon-coated Fe3O4 nanoparticle/carbon nanotube composite with enhanced electrochemical energy storage. Front. Mater. Sci. 14, 145–154 (2020). https://doi.org/10.1007/s11706-020-0504-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-020-0504-x

Keywords

Navigation