Skip to main content

Advertisement

Log in

Achievements and trends of solid oxide fuel cells in clean energy field: a perspective review

  • Review Article
  • Published:
Frontiers in Energy Aims and scope Submit manuscript

Abstract

The main concerns in the world today, especially in the energy field, are subjected to clean, efficient, and durable sources of energy. These three aspects are the main goals that scientist are paying attention to. However, the various types of energy resources include fossil and sustainable ones, but still some challenges are chasing these kinds from energy conversion, storage, and efficiency. Hence, the most reliable and considered energy resource nowadays is the utilized one which is as highly efficient, clean, and everlasting as possible. So, in this review, an attempt is made to highlight one of the promising types as a clean and efficient energy resource. Solid oxide fuel cell (SOFC) is the most efficient type of the fuel cell types involved with hydrogen and hydrocarbon-based fuels, especially when it works with combined heat and power (CHP). The importance of this type is due to its nature of work as conversion tool from chemical to electrical for generation of power without noise, pollution, and can be safely handled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pfenninger S, Keirstead J. Renewables, nuclear, or fossil fuels? Scenarios for Great Britain’s power system considering costs, emissions and energy security. Applied Energy, 2015, 152: 83–93

    Google Scholar 

  2. Johnson Matthey P L C. Fuel cell today. 2016–12–10, http://www. fuelcelltoday.com/history

    Google Scholar 

  3. Jeong J, Azad A K, Schlegl H, Kim B, Baek S, Kim K, Kang H, Hyun J. Structural, thermal and electrical conductivity characteristics of Ln0.5Sr0.5Ti0.5Mn0.5O3±d (Ln: La, Nd and Sm) complex perovskites as anode materials for solid oxide fuel cell. Journal of Solid State Chemistry, 2015, 226:154–163

    Google Scholar 

  4. Chen F F. The Future of Energy I: Fossil Fuels. New York: Springer, 2011: 43–73

    Google Scholar 

  5. Menzler N H, Tietz F, Uhlenbruck S, Buchkremer H P, Stöver D. Materials and manufacturing technologies for solid oxide fuel cells. Journal of Materials Science, 2010, 45(12): 3109–3135

    Google Scholar 

  6. Haile S M. Fuel cell materials and components. Acta Materialia, 2003, 51(19): 5981–6000

    Google Scholar 

  7. Johnson Matthey P L C. Fuel cell today: the fuel cell industry review 2013. 2017–1–20, http://fuelcelltoday.com/media/1889744/fct_review_2013.pdf.

    Google Scholar 

  8. Jiang S P, Chan S H. A review of anode materials development in solid oxide fuel cells. Journal of Materials Science, 2004, 39(14): 4405–4439

    Google Scholar 

  9. Suntivich J, Gasteiger H A, Yabuuchi N, Nakanishi H. Goodenough J B, Shao-Horn Y. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries. Nature Chemistry, 2011, 3(8): 647

    Google Scholar 

  10. Azad A K, Kim J H, Irvine J T S. Structural, electrochemical and magnetic characterization of the layered-type PrBa0.5Sr0.5Co2O5+δ perovskite. Journal of Solid State Chemistry, 2014, 213: 268–274

    Google Scholar 

  11. Azad A, Irvine J. High density and low temperature sintered proton conductor BaCe0.5Zr0.35Sc0.1Zn0.05O3–d. Solid State Ionics, 2008, 179(19–20): 678–682

    Google Scholar 

  12. Rossmeisl J, Bessler W G. Trends in catalytic activity for SOFC anode materials. Solid State Ionics, 2008, 178(31–32): 1694–1700

    Google Scholar 

  13. Satyapal S. Expanding the use of biogas with fuel cell technologies. National Renewable Energy Laboratory, 2013, 7: 1–42

    Google Scholar 

  14. Tarancón A, Burriel M, Santiso J, Skinner S J, Kilner J A. Advances in layered oxide cathodes for intermediate temperature solid oxide fuel cells. Journal of Materials Chemistry, 2010, 20 (19): 3799–3813

    Google Scholar 

  15. Lu L, Ni C, Cassidy M, John T S I. Demonstration of high performance in a perovskite oxide supported solid oxide fuel cell based on La and Ca co-doped SrTiO3. Journal of Materials Chemistry A, 2016, 4(30): 11708–11718

    Google Scholar 

  16. Chen F F. The Future of Energy I: Chapter 2. Fossil Fuels. New York: Springer, 2011: 53–63

    Google Scholar 

  17. Chen Y, Zhou W, Ding D, Liu M, Ciucci F, Tade M, Shao Z. Advances in cathode materials for solid oxide fuel cells: complex oxides without alkaline earth metal elements. Advanced Energy Materials, 2015, 5(18): 15005–15037

    Google Scholar 

  18. Gao Z, Mogni L, Miller E C, Railsback J, Barnet S A. A perspective on low-temperature solid oxide fuel cells. Energy & Environmental Science, 2016, 9(5): 1602–1644

    Google Scholar 

  19. Möbius H H. High Temperature and Solid Oxide Fuel Cells: Chapter 2-History. Oxford: Elsevier, 2003: 23–51

    Google Scholar 

  20. Cook B. Introduction to fuel cells and hydrogen technology. Engineering Science & Education Journal, 2002, 11(6): 205–216

    Google Scholar 

  21. Andjar J M, Segura F. Fuel cells: history and updating. A walk along two centuries. Renewable & Sustainable Energy Reviews, 2009, 13(9): 2309–2322

    Google Scholar 

  22. Smithsonian Institution. Fuel cell origins: 1840–1890. 2015–12–10, http://americanhistory.si.edu/fuelcells/origins/origins.htm

  23. National Aeronautics and Space Administration. Solid oxid fuel cells and electrolysis membranes. 2010–2–2, https://www.grc. nasa.gov/WWW/StructuresMaterials/Ceramics/research_solid. html

  24. Gross J H. Fuel cell technology. Joint Legislative air and water pollution committee, 2002, 2(1): 1–7

    MathSciNet  Google Scholar 

  25. US. Department of Energy. Fuel Cell Handbook. University Press of the Pacific, 2005

    Google Scholar 

  26. Tesfai A, John T S I. Solid oxides fuel cells: theory and material. Comprehensive Renewable Energy, 2012, 38(48): 261–276

    Google Scholar 

  27. Frade J R. Theoretical behaviour of concentration cells based on ABO3 perovskite materials with protonic and oxygen ion conduction. Solid State Ionics, 1995, 78(1–2): 87–97

    Google Scholar 

  28. Tietz F, Buchkremer H P, Stöver D. 10 years of materials research for solid oxide fuel cells. Journal of Electroceramics, 2006, 17(2–4): 701–707

    Google Scholar 

  29. Huang X, Ni C, Zhao G, John T S I. Oxygen storage capacity and thermal stability of the CuMnO2–CeO2 composite system. Journal of Materials Chemistry A, 2015, 3(24): 12958–12964

    Google Scholar 

  30. ChemViews. Fuel cell capacity and cost trends. 2017–1–5, http://www.chemistryviews.org/details/ezine/4817371/Fuel_Cell_Capacity_and_Cost_Trends.html

  31. Föger K. Materials basics for fuel cells. Materials for Fuel Cells, 2008, 14(4): 6–63

    Google Scholar 

  32. Patent Elseveir. Materials, processes for producing fuel cells and active membranes. Fuel Cells Bulletin, 2001, 4(34):14

    Google Scholar 

  33. Patent Elseveir. Electrocatalyst particles for fuel cells. Focus on Catalysts, 2009, 2009(2): 8

    Google Scholar 

  34. Rikkinen E, Santasalo-Aarnio A, Airaksinen S, Borghei M, Viitanen V, Sainio J, Kauppinen E I, Kallio T, Outi A, Krause I. Atomic layer deposition preparation of Pd nanoparticles on a porous carbon support for alcohol oxidation. Journal of Physical Chemistry C, 2011, 115(46): 23067

    Google Scholar 

  35. Smotkin E S, Ley K L, Pu C, Liu R. Catalysts for direct oxidation fuel cells. USA Patent, WO98/40161, 1998–09–17

    Google Scholar 

  36. Metodiev T V. Gold catalyst for fuel cells. Fuel Cells Bulletin, 1999, 2(9): 16

    Google Scholar 

  37. Elseveir News. Materials for fuel cells examined. Membrane Technology, 2008, 2008(10): 8

    Google Scholar 

  38. Sundmacher K, Hanke-Rauschenbach R, Heidebrecht P, Rihko-Struckmann L, Vidaković-Koch T. Some reaction engineering challenges in fuel cells: dynamics integration, renewable fuels, enzymes. Current Opinion in Chemical Engineering, 2012, 1(3): 328–335

    Google Scholar 

  39. Hemmes K, Kamp LM, Vernay A B H, de Werk G. A multi-source multi-product internal reforming fuel cell energy system as a stepping stone in the transition towards a more sustainable energy and transport sector. International Journal of Hydrogen Energy, 2011, 36(16): 10221–10227

    Google Scholar 

  40. Bengt S, Juan F. Heat Transfer in Aerospace Applications Chapter 8–Fuel Cells. London: Elsevier, 2017: 145–153

    Google Scholar 

  41. Irshad M, Siraj K, Raza R, Ali A, Tiwari P, Zhu B, Rafique A, Kaleem U, Usman A. A brief description of high temperature solid oxide fuel cell’s operation, materials, design, fabrication technologies and performance. Applied Sciences, 2016, 6(3): 75

    Google Scholar 

  42. Singhal S C. Solid oxide fuel cells: an overview. Preprint Papers- American Chemical Society, Division of Fuel Chemistry, 2004, 49 (2): 478

    Google Scholar 

  43. Dollard W J. Solid oxide fuel cell development at Westinghouse. Journal of Power Sources, 1992, 37(1–2): 133–139

    Google Scholar 

  44. Laosiripojana N, Wiyaratn W, Kiatkittipong W, Arpornwichanop A, Soottitantawat A, Assabumrungrat S. Review on solid oxide fuel cell technology. Engineering Journal, 2009, 13(1): 0125–8281

    Google Scholar 

  45. Tesfai A, Connor P, Nairn J, Irvine J T S. Thermal cycling evaluation of rolled tubular solid oxide fuel cells. Journal of Fuel Cell Science and Technology, 2011, 8(6): 061001

    Google Scholar 

  46. Ge X M, Chan S H, Liu Q L, Sun Q. Solid oxide fuel cell anode materials for direct hydrocarbon utilization. Advanced Energy Materials, 2012, 2(10): 1156–1181

    Google Scholar 

  47. Bharadwaj S R, Varma S, Wani B N. Electroceramics for fuel cells, batteries and sensors.In: Functional Materials, 2012: 639–674

    Google Scholar 

  48. Michalovic M. Fuel cells oxidation reaction. ChemMatters, 2007: 16–19

    Google Scholar 

  49. Gasik M. Materials for Fuel Cells. Cambridge: Woodhead Publishing Limited, 2008

    Google Scholar 

  50. Shaikh S P S, Muchtar A, Somalu M R. A review on the selection of anode materials for solid-oxide fuel cells. Renewable & Sustainable Energy Reviews, 2015, 51: 1–8

    Google Scholar 

  51. Tao S, Irvine J T S. Optimization of mixed conducting properties of Y2O3-ZrO2-TiO2 and Sc2O3-Y2O3-ZrO2-TiO2 solid solutions as potential SOFC anode materials. Journal of Solid State Chemistry, 2002, 165(1): 12–18

    Google Scholar 

  52. Azad A K, Zaini J, Petra P I, Ming L C, Eriksson S G. Effect of Nd-doping on structural, thermal and electrochemical properties of LaFe0.5Cr0.5O3 perovskites. Ceramics International, 2016, 42(3): 4532–4538

    Google Scholar 

  53. Lee S, Bae J, Katikaneni S P. La0.8Sr0.2Cr0.95Ru0.05O3–x and Sm0.8Ba0.2Cr0.95Ru0.05O3–x as partial oxidation catalysts for diesel. International Journal of Hydrogen Energy, 2014, 39(10): 4938–4946

    Google Scholar 

  54. Menzler N H, Sebold D, Wessel E. Interaction of La0.58Sr0.40Co0.20Fe0.80O3–δ cathode with volatile Cr in a stack test—scanning electron microscopy and transmission electron microscopy investigations. Journal of Power Sources, 2014, 254: 148–152

    Google Scholar 

  55. Sun X F, Wang S R, Wang Z R, Qian J Q, Wen T L, Huang F Q. Evaluation of Sr0.88Y0.08TiO3–CeO2 as composite anode for solid oxide fuel cells running on CH4 fuel. Journal of Power Sources, 2009, 187(1): 85–89

    Google Scholar 

  56. Steiner H J, Middleton P H, Steele B C H. Ternary titanates as anode materials for solid oxide fuel cells. Journal of Alloys and Compounds, 1993, 190(2): 279–285

    Google Scholar 

  57. Pihlatie M H, Kaiser A, Mogensen M B. Electrical conductivity of Ni–YSZ composites: variants and redox cycling. Solid State Ionics, 2012, 222–223(222): 38–46

    Google Scholar 

  58. Safeen K, Micheli V, Bartali R, Gottardi G, Safeen A, Ullah H, Laidani N. Synthesis of conductive and transparent Nb-doped TiO2 films: role of the target material and sputtering gas composition. Materials Science in Semiconductor Processing, 2017, 66: 74–80

    Google Scholar 

  59. Han J, Sun Q, Song Y. Enhanced thermoelectric properties of La and Dy co-doped, Sr-deficient SrTiO3 ceramics. Journal of Alloys and Compounds, 2017, 705: 22–27

    Google Scholar 

  60. Ideris A, Croiset E, Pritzker M. Ni-samaria-doped ceria (Ni-SDC) anode-supported solid oxide fuel cell (SOFC) operating with CO. International Journal of Hydrogen Energy, 2016, 42(14): 9180–9187

    Google Scholar 

  61. Gondolini A, Mercadelli E, Sangiorgi A, Sanson A. Integration of Ni-GDC layer on a NiCrAl metal foam for SOFC application. Journal of the European Ceramic Society, 2017, 37(3): 1023–1030

    Google Scholar 

  62. Sarıboğa V, Faruk Oksüzomer M A. Cu-CeO2 anodes for solid oxide fuel cells: determination of infiltration characteristics. Journal of Alloys and Compounds, 2016, 688: 323–331

    Google Scholar 

  63. Light N, Kesler O. Air plasma sprayed Cu-Co-GDC anode coatings with various Co loadings. Journal of Power Sources, 2013, 233: 157–165

    Google Scholar 

  64. Droushiotis N, Grande F D, Dzarfan Othman M H, Kanawka K, Doraswami U, Metcalfe I S, Li K, Kelsall G. Comparison between anode-supported and electrolyte-supported Ni-CGO-LSCF microtubular solid oxide. Fuel Cells (Weinheim), 2014, 14(2): 200–211

    Google Scholar 

  65. Patil K C, Hegde M S, Rattan T, Aruna S T. Zirconia and related oxide materials. Chemistry of Nanocrystalline Oxide Materials, 2008: 212–225

    Google Scholar 

  66. Hossain S, Abdalla A M, Jamain S N B, Zaini J H, Azad A K. A review on proton conducting electrolytes for clean energy and intermediate temperature-solid oxide fuel cells. Renewable & Sustainable Energy Reviews, 2017, 79: 750–764

    Google Scholar 

  67. Brochu M, Loehman R E. Hermetic sealing of solid oxide fuel cells. Microjoining and Nanojoining, 2000:718–740

    Google Scholar 

  68. Steele B C H, Heinzel A. Materials for fuel-cell technologies. Nature, 2001, 414(6861): 345–352

    Google Scholar 

  69. Haile SM. Materials for fuel cells. Materials today, 2003, 6(3): 24–29

    Google Scholar 

  70. Sun C, Hui R, Roller J. Cathode materials for solid oxide fuel cells. Journal of Solid State Electrochemistry, 2010, 14(7): 1125–1144

    Google Scholar 

  71. Kim Y N, Kim J H, Huq A, Paranthaman M P, Manthiram A. (Y0.5In0.5)Ba(Co,Zn)4O7 cathodes with superior high-temperature phase stability for solid oxide fuel cells. Journal of Power Sources, 2012, 214(4): 7–14

    Google Scholar 

  72. Sammes NM, Roy B R. Reference module in chemistry, molecular sciences and chemical engineering. Encyclopedia of Electrochem Power Sources, 2009, 25–33

    Google Scholar 

  73. McCarthy B P, Pederson L R, Chou Y S, Zhou X D, Surdoval W A, Wilson L C. Low-temperature sintering of lanthanum strontium manganite-based contact pastes for SOFCs. Journal of Power Sources, 2008, 180(1): 294–300

    Google Scholar 

  74. Meixner D L, Cutler R A. Sintering and mechanical characteristics of lanthanum strontium manganite. Solid State Ionics, 2002, 146 (3–4): 273–284

    Google Scholar 

  75. Khandale P, Lajurkar R P, Bhoga S S. Nd1.8Sr0.2NiO4–δ: Ce0.9Gd0.1O2–δ composite cathode for intermediate temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2014, 39(33): 19039–19050

    Google Scholar 

  76. Jeong C, Lee J H, Park M, Hong J, Kim H, Son J W, Lee J H, Kim B K, Yoon K J. Design and processing parameters of La2NiO4 + δ–based cathode for anode-supported planar solid oxide fuel cells (SOFCs). Journal of Power Sources, 2015, 297: 370–378

    Google Scholar 

  77. Meng F, Xia T, Wang J, Shi Z, Zhao H. Praseodymium-deficiency Pr0.94BaCo2O6–δ double perovskite: a promising high performance cathode material for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2015, 293: 741–750

    Google Scholar 

  78. Jarot R, Muchtar A, Dawoud W R W, Muhamad N, Majlanlie E H. Fabrication of porous LSCF-SDC carbonates composite cathode for solid oxide fuel cell (SOFC) applications. Key Engineering Materials, 2011, 471–472: 179–184

    Google Scholar 

  79. Kim J H, Cassidy M, Irvine J T S, Bae J. Advanced electrochemical properties of LnBa0.5Sr0.5Co2O5 + d (Ln = Pr, Sm, and Gd) as cathode materials for IT-SOFC. Journal of the Electrochemical Society, 2009, 156(6): B682–B689

    Google Scholar 

  80. Wincewicz K C, Cooper J S. Taxonomies of SOFC material and manufacturing alternatives. Journal of Power Sources, 2005, 140 (2): 280–296

    Google Scholar 

  81. Bastawors A. Crystal structure metals-ceramics: material science and engineering. 2001–1–31, http://studylib.net/doc/10619426/crystal-structure-ashraf-bastawros-ceramic-crystal-struct

    Google Scholar 

  82. Bhushan B. Scanning Probe Microscopy in Nanoscience and Nanotechnology: Chapter 17. Berlin: Springer, 2009: 615

    Google Scholar 

  83. Peña M A, Fierro J L G. Chemical structures and performance of perovskite oxides. Chemical Reviews, 2001, 101(7): 1981–2018

    Google Scholar 

  84. Luxová J, Šulcová P, Trojan M. Study of perovskite compounds. Thermal Analysis and Calorimetry, 2008, 93(3): 823–827

    Google Scholar 

  85. Bhalla A S, Guo R, Roy R. The perovskite structure—a review of its role in ceramic science and technology. Materials Research Innovations, 2000, 4(1): 3–26

    Google Scholar 

  86. Johnsson M, Lemmens P. Introduction to advanced ceramics. Cornel Digital Library, 2001:1–11

    Google Scholar 

  87. Azad A K. Synthesis, structure and magnetic properties of double perovskite of the type A2MnBO6. Dissertation for the Doctoral Degree. Gotebrg: Gotebrg University, 2004

    Google Scholar 

  88. Andreassson J. Inelastic light scattering study of strongly correlated oxides. Dissertation for the Doctoral Degree. Gotebrg: Gotebrg University, 2005

    Google Scholar 

  89. Materials Research Science and Engineering Centers. 2016–6–20, http://www.mrsec.org/research

  90. Kobayashi K I, Sawada H, Terakura K. Room-temperature magneto resistance in an oxide material with an ordered doubleperovskite structure. Nature, 1998, 395(6703): 677–680

    Google Scholar 

  91. Dasgupta T S. Materials Modeling. 2015–9–15, http://www.bose. res.in/~tanusri/research.html

  92. Witczakkrempa W, Gang C, Yong B K, Balents L. Correlated quantum phenomena in the strong spin-orbit regime. Annual Review of Condensed Matter Physics, 2013, 5(1): 57–82

    Google Scholar 

  93. GRACE Communications Foundation. Fossil fuel and energy use. 2009, http://www. sustainabletable. org

    Google Scholar 

  94. Cheddie D F. Integration of a solid oxide fuel cell into a 10MW gas turbine power plant. Energies, 2010, 3(4): 754–769

    Google Scholar 

  95. Yokokawa H, Tu H H, Iwanschitz B, Mai A. Fundamental mechanisms limiting solid oxide fuel cell durability. Journal of Power Sources, 2008, 182(2): 400–412

    Google Scholar 

  96. Goodenough J B. Electrochemical energy storage in a sustainable modern society. Energy & Environmental Science, 2013, 7(1): 14–18

    Google Scholar 

  97. Stambouli A B, Traversa E. Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renewable & Sustainable Energy Reviews, 2002, 6(5): 433–455

    Google Scholar 

  98. Orera V M, Laguna-Bercero M A, Larrea A. Fabrication methods and performance in fuel cell and steam electrolysis operation modes of small tubular solid oxide fuel cells: a review. Frontiers in Energy Research, 2014, 2: 1–13

    Google Scholar 

  99. Kreysa G, Ota K I, Savinell R F. Encyclopedia of Applied Electrochemistry. New York: Springer, 2014

    Google Scholar 

  100. Karton V V. Solid State Electrochemistry II: Electrodes, Interfaces and Ceramic Membranes. Wiley, 2011

    Google Scholar 

  101. Prinz F B, Hayre R O, Lee M. Micro and nano scale electrochemistry: application to fuel cells. GCEP Technical Report, 2004

    Google Scholar 

  102. CERAMIC INDUSTRY. CERAMIC ENERGY: Advances in SOFC materials and manufacturing. 2004–9–1, https://www. ceramicindustry.com/articles/86115-ceramic-energy-advances-insofc- materials-and-manufacturing

  103. Bieberle-Hütter A, Galinski H, Rupp J L M, Ryll T, Scherrer B, Tölke R, Gauckler L J. Micro-solid oxide fuel cells: status, challenges, and chances. Monatshefte für Chemie, 2009, 140(9): 975–983

    Google Scholar 

  104. Abdalla M A, Hossain S, Azad A T, Petra P M I, Begum F, Eriksson S G, Azad A K. Nanomaterials for solid oxide fuel cells: a review. Renewable & Sustainable Energy Reviews, 2018, 82: 353–368

    Google Scholar 

  105. Cook B. Introduction to fuel cells and hydrogen technology. Engineering Science & Education Journal, 2002, 11(6): 205–216

    Google Scholar 

  106. Mazumder S K, Acharya K, Haynes C L, Williams R, von Spakovsky MR, Nelson D J, Rancruel D F, Hartvigsen J, Gemmen R S. Solid-oxide-fuel-cell performance and durability: resolution of the effects of power-conditioning systems and application loads. IEEE Transactions on Power Electronics, 2004, 19(5): 1263–1278

    Google Scholar 

  107. Boder M, Dittmeyer R. Catalytic modification of conventional SOFC anodes with a view to reducing their activity for direct internal reforming of natural gas. Journal of Power Sources, 2006, 155(1): 13–22

    Google Scholar 

  108. Weber A, Ivers-Tiffée E. Materials and concepts for solid oxide fuel cells (SOFCs) in stationary and mobile applications. Journal of Power Sources, 2004, 127(1–2): 273–283

    Google Scholar 

  109. Morse J D, Jankowski A F, Hayes J P, Graff R T. A novel thin film solid oxide fuel cell for microscale energy conversion. Micromachined Devices Components V, 1999, 3876: 223–226

    Google Scholar 

  110. Rey-mermet S, Muralt P. Microfabricated solid oxide fuel cells. Epfl, 2009, 56(2):498–500

    Google Scholar 

  111. Evans A, Bieberle-Hütter A, Rupp J L M, Gauckler L J. Review on microfabricated micro-solid oxide fuel cell membranes. Journal of Power Sources, 2009, 194(1): 119–129

    Google Scholar 

  112. Bieberle-Hütter A, Beckel D, Infortuna A, Muecke U P, Rupp J L M, Gauckler L J, Rey-Mermet S, Muralt P, Bieri N R, Hotz N, Stutz M J, Poulikakos D, Heeb P, Müller P, Bernard A, Gmüre R, Hocker T. A micro-solid oxide fuel cell system as battery replacement. Journal of Power Sources, 2008, 177(1): 123–130

    Google Scholar 

  113. Sammes N, Galloway K, Yamaguchi T, Serincan M. Concept, manufacture and results of the microtubular solid oxide fuel cell. Transactions on Electrical and Electronic Materials, 2011, 12(1): 1–6

    Google Scholar 

  114. Zhu B. Advanced hybrid ion conducting ceramic composites and applications in new fuel cell generation. Key Engineering Materials, 2007, 280–283: 413–418

    Google Scholar 

  115. Muecke U P, Beckel D, Bernard A, Bieberle H A, Graf S, Infortuna A. Micro solid oxide fuel cells on glass ceramic substrates. Advanced Functional Materials, 2010, 18(20):3158–3168

    Google Scholar 

  116. Rey-Mermet S, Muralt P. Solid oxide fuel cell membranes supported by nickel grid anode. Solid State Ionics, 2008, 179 (27–32): 1497–1500

    Google Scholar 

  117. Huang H, Nakamura M, Su P, Fasching R, Saito Y, Prinz F B. High-performance ultrathin solid oxide fuel cells for lowtemperature operation. Journal of the Electrochemical Society, 2007, 154(1): B20–B24

    Google Scholar 

  118. Shim J H, Chao C C, Huango H, Prinz F B. Atomic layer deposition of yttria-stabilized zirconia for solid oxide fuel cells. Chemistry of Materials, 2007, 19(15): 3850–3854

    Google Scholar 

  119. Kwon C W, Lee J, Kim K B, Lee H W, Lee J H, Son J W. The thermomechanical stability of micro-solid oxide fuel cells fabricated on anodized aluminum oxide membranes. Journal of Power Sources, 2012, 210(210): 178–183

    Google Scholar 

  120. Su P C, Chao C C, Shim J H, Fasching R, Prinz F B. Solid oxide fuel cell with corrugated thin film electrolyte. Nano Letters, 2008, 8 (8): 2289

    Google Scholar 

  121. Joo J H, Choi G M. Simple fabrication of micro-solid oxide fuel cell supported on metal substrate. Journal of Power Sources, 2008, 182(2): 589–593

    Google Scholar 

  122. Kang S, Su P C, Park Y I, Saito Y, Prinz F B. Thin film solid oxide fuel cells on porous nickel substrates with multistage nanohole array. Journal of the Electrochemical Society, 2006, 153(3): A554–A559

    Google Scholar 

  123. Shao Z, Haile S M, Ahn J, Ronney P D, Zhan Z, Barnett S A. A thermally self-sustained micro solid-oxide fuel-cell stack with high power density. Nature, 2005, 435(7043): 795–798

    Google Scholar 

  124. Valadez T N, Norton J R, Neary M C. Reaction of Cp* (Cl)M (Diene) (M = Ti, Hf) with Isonitriles. Journal of the American Chemical Society, 2015, 137(32): 10152–10155

    Google Scholar 

  125. Sholklapper T Z, Kurokawa H, Jacobson C P, Visco S J, de Jonghe L C. Nanostructured solid oxide fuel cell electrodes. Nano Letters, 2006, 7(7): 2136–2141

    Google Scholar 

  126. Sata N, Eberman K, Eberl K, Maier J. Mesoscopic fast ion conduction in nanometre-scale planar heterostructures. Nature, 2000, 408(6815): 946–949

    Google Scholar 

  127. Chockalingam R, Basu S. Impedance spectroscopy studies of Gd- CeO2-(LiNa)CO3 nano composite electrolytes for low temperature SOFC applications. International Journal of Hydrogen Energy, 2011, 36(22): 14977–14983

    Google Scholar 

  128. Myung J H, Shin T H, Kim S D, Park H G, Moon J, Hyun S H. Optimization of Ni-zirconia based anode support for robust and high-performance 5-5 cm2 sized SOFC via tape-casting/co-firing technique and nano-structured anode. International Journal of Hydrogen Energy, 2015, 40(6): 2792–2799

    Google Scholar 

  129. Shah M, Voorhees PW, Barnett S A. Time-dependent performance changes in LSCF-infiltrated SOFC cathodes: the role of nanoparticle coarsening. Solid State Ionics, 2011, 187(1): 64–67

    Google Scholar 

  130. Tsuchiya M, Lai B K, Ramanathan S. Scalable nanostructured membranes for solid-oxide fuel cells. Nature Nanotechnology, 2011, 6(5): 282

    Google Scholar 

  131. Zhang H, Zhao F, Chen F, Xia C. Nano-structured Sm0.5Sr0.5CoO3–δ electrodes for intermediate-temperature SOFCs with zirconia electrolytes. Solid State Ionics, 2011, 192 (1): 591–594

    Google Scholar 

  132. Kerman K, Lai B, Ramanathan S. Nanoscale compositionally graded thin-film electrolyte membranes for low-temperature solid oxide fuel cells. Advanced Energy Materials, 2012, 2(6): 655–655

    Google Scholar 

  133. Wang X, Huang H, Holme T, Tian X, Prinz F B. Thermal stabilities of nanoporous metallic electrodes at elevated temperatures. Journal of Power Sources, 2008, 175(1): 75–81

    Google Scholar 

  134. Gu Y C, Lee Y H, Cha S W. Multi-component nano-composite electrode for SOFCS via thin film technique. Renewable Energy, 2014, 65(5):130–136

    Google Scholar 

  135. Lin Y, Beale S B. Performance predictions in solid oxide fuel cells. Applied Mathematical Modelling, 2006, 30(11): 1485–1496

    Google Scholar 

  136. Endless Sphere Electric Vehicle and Technology Forum. EV business world. 2016–8–1, https://endless-sphere.com/forums/viewtopic.php?f = 15&t = 57655&start = 100

  137. Osaka Gas CO., LTD. Principle of SOFC power generation. 2017–2–10, http://www.osakagas.co.jp/en/rd/fuelcell/sofc/sofc/index. html

  138. Hydrogen Fuel Cell Engines and Related Technologies Course. 2015–9–10, http://whitesmoke.wikifoundry.com/page/7.+ Addendum,+ H.A.R.T.+(Hydrogen + fuelled)+ engine

  139. Dawoud B, Amer E, Gross D. Experimental investigation of an adsorptive thermal energy storage. International Journal of Energy Research, 2010, 31(2): 135–147

    Google Scholar 

  140. Vibhu V, Rougier A, Nicollet C, Flura A, Fourcade S, Penin N, Grenier J C, Bassat J M. Pr4Ni3O10 + δ: a new promising oxygen electrode material for solid oxide fuel cells. Journal of Power Sources, 2016, 317: 184–193

    Google Scholar 

  141. Shimada H, Yamaguchi T, Suzuki T, Sumi H, Hamamoto K, Fujishiro Y. High power density cell using nanostructured Srdoped SmCoO3 and Sm-doped CeO2 composite powder synthesized by spray pyrolysis. Journal of Power Sources, 2016, 302: 308–314

    Google Scholar 

  142. Myung J H, Neagu D, Miller D N, Irvine J T. Switching on electrocatalytic activity in solid oxide cells. Nature, 2016, 537 (7621): 528–531

    Google Scholar 

  143. Sengodan S, Choi S, Jun A, Shin T H, Ju Y W, Jeong H Y, Shin J, John T S I, Kim G. Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells. Nature Materials, 2015, 14(2): 205–209

    Google Scholar 

  144. Wu L, Wang S, Wang S, Xia C. Enhancing the performance of doped ceria interlayer for tubular solidoxide fuel cells. Journal of Power Sources, 2013, 240(240): 241–244

    Google Scholar 

  145. Park Y M, Kim H. Composite cathodes based on Sm0.5Sr0.5CoO3Ld with porous Gd-doped ceria barrier layers for solid oxide fuel cells. International Journal of Hydrogen Energy, 2012, 37(20):15320–15333

    Google Scholar 

  146. Wang F, Chen D, Shao Z. Sm0.5Sr0.5CoO3–δ infiltrated cathodes for solid oxide fuel cells with improved oxygen reduction activity and stability. Journal of Power Sources, 2012, 216: 208–215

    Google Scholar 

  147. Qian J, Zhu Z, Dang J, Jiang G, Liu W. Improved performance of solid oxide fuel cell with pulsed laser deposited thin film ceria–zirconia bilayer electrolytes on modified anode substrate. Electrochimica Acta, 2013, 92(92): 243–247

    Google Scholar 

  148. Li C, Chen H, Shi H, Tade M O, Shao Z. Green fabrication of composite cathode with attractive performance for solid oxide fuel cells through facile inkjet printing. Journal of Power Sources, 2015, 273(273): 465–471

    Google Scholar 

  149. Gao Z, Miller E C, Barnett S A. A high power density intermediate-temperature solid oxide fuel cell with thin (La0.9Sr0.1)0.98 (Ga0.8Mg0.2)O3–δ electrolyte and nano-scale. Advanced Functional Materials, 2015, 24(36): 5703–5709

    Google Scholar 

  150. Zhang H, Zhao F, Chen F, Xia C. Nano-structured Sm0.5Sr0.5CoO3–δ electrodes for intermediate-temperature SOFCs with zirconia electrolytes. Solid State Ionics, 2011, 192(1): 591–594

    Google Scholar 

  151. Liu M, Dong D, Zhao F, Gao J, Ding D, Liu X, Meng G. Highperformance cathode-supported SOFCs prepared by a single-step co-firing process. Journal of Power Sources, 2008, 182(2): 585–588

    Google Scholar 

  152. Chang J C, Lee M C, Yang R J, Chang Y C, Lin T N, Wang C H, Kao W X, Lee L S. Fabrication and characterization of Sm0.2Ce0.8O2–δ, Sm0.5Sr0.5CoO3–δ composite cathode for anode supported solid oxide fuel cell. Journal of Power Sources, 2011, 196(6): 3129–3133

    Google Scholar 

  153. Sarmah P, Gogoi T K, Das R. Estimation of operating parameters of a SOFC integrated combined power cycle using differential evolution based inverse method. Applied Thermal Engineering, 2017, 119: 98–107

    Google Scholar 

  154. Gogoi T K, Pandey M, Das R. Estimation of operating parameters of a reheat regenerative power cycle using simplex search and differential evolution based inverse methods. Energy Conversion and Management, 2015, 91: 204–218

    Google Scholar 

  155. Gogoi T K, Das R. A combined cycle plant with air and fuel recuperator for captive power application. Part 2: Inverse analysis and parameter estimation. Energy Conversion and Management, 2014, 79(79): 778–789

    Google Scholar 

  156. Gogoi T K, Das R. Inverse analysis of an internal reforming solid oxide fuel cell system using simplex search method. Applied Mathematical Modelling, 2013, 37(10–11): 6994–7015

    MathSciNet  MATH  Google Scholar 

  157. Cable T L, Sofie S W. A symmetrical, planar SOFC design for NASA’s high specific power density requirements. Journal of Power Sources, 2007, 174(1): 221–227

    Google Scholar 

  158. Park J S, An J, Lee M H, Prinz F B, Lee W. Effects of surface chemistry and microstructure of electrolyte on oxygen reduction kinetics of solid oxide fuel cells. Journal of Power Sources, 2015, 295: 74–78

    Google Scholar 

  159. Tsipis E V, Naumovich E N, Patrakeev M V, Yaremchenko A A, Marozau I P, Kovalevsky A V, Waerenborgh J C, Kharton V V. Oxygen deficiency, vacancy clustering and ionic transport in (La, Sr)CoO3–d. Solid State Ionics, 2011, 192(1): 42–48

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Graduate Research Scholarship (GRS) granted by the Graduate Research Office of Univeristi Brunei Darussalam.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdalla M. Abdalla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdalla, A.M., Hossain, S., Petra, P.M. et al. Achievements and trends of solid oxide fuel cells in clean energy field: a perspective review. Front. Energy 14, 359–382 (2020). https://doi.org/10.1007/s11708-018-0546-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11708-018-0546-2

Keywords

Navigation